Compare commits
5 Commits
2b38c04a57
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
27082cbf33 | ||
|
|
e3b0f2a368 | ||
|
|
baba9b9b9f | ||
|
|
046e36678e | ||
|
|
be70c4e160 |
232
README.md
232
README.md
@@ -1,3 +1,233 @@
|
||||
This project was a test run using Cursor and "vibe coding" to create a full object detection project. I wrote almost no lines of code to get to this point, which kind of works. The technology is definitely impressive, but really feels more suited to things that can be developed in a more test-driven way. I'll update this later with other things I've learned along the way.
|
||||
|
||||
I stopped this project here because it got trapped in a doom loop not being able to fix a bug in the eval code and I wanted this to be an investigation into how well I could do with very low intervention.
|
||||
|
||||
|
||||
# Torchvision Vibecoding Project
|
||||
|
||||
A project demonstrating finetuning torchvision object detection models, built with the help of Vibecoding AI.
|
||||
A PyTorch-based object detection project using Mask R-CNN to detect pedestrians in the Penn-Fudan dataset. This project demonstrates model training, evaluation, and visualization with PyTorch and Torchvision.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Project Setup](#project-setup)
|
||||
- [Project Structure](#project-structure)
|
||||
- [Data Preparation](#data-preparation)
|
||||
- [Configuration](#configuration)
|
||||
- [Training](#training)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Visualization](#visualization)
|
||||
- [Testing](#testing)
|
||||
- [Debugging](#debugging)
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.10+
|
||||
- [uv](https://github.com/astral-sh/uv) for package management
|
||||
- CUDA-compatible GPU (optional but recommended)
|
||||
|
||||
## Project Setup
|
||||
|
||||
1. Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/yourusername/torchvision-vibecoding-project.git
|
||||
cd torchvision-vibecoding-project
|
||||
```
|
||||
|
||||
2. Set up the environment with uv:
|
||||
```bash
|
||||
uv init
|
||||
uv sync
|
||||
```
|
||||
|
||||
3. Install development dependencies:
|
||||
```bash
|
||||
uv add ruff pytest matplotlib
|
||||
```
|
||||
|
||||
4. Set up pre-commit hooks:
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
├── configs/ # Configuration files
|
||||
│ ├── base_config.py # Base configuration with defaults
|
||||
│ ├── debug_config.py # Configuration for quick debugging
|
||||
│ └── pennfudan_maskrcnn_config.py # Configuration for Penn-Fudan dataset
|
||||
├── data/ # Dataset directory (not tracked by git)
|
||||
│ └── PennFudanPed/ # Penn-Fudan pedestrian dataset
|
||||
├── models/ # Model definitions
|
||||
│ └── detection.py # Mask R-CNN model definition
|
||||
├── outputs/ # Training outputs (not tracked by git)
|
||||
│ └── <config_name>/ # Named by configuration
|
||||
│ ├── checkpoints/ # Model checkpoints
|
||||
│ └── *.log # Log files
|
||||
├── scripts/ # Utility scripts
|
||||
│ ├── download_data.sh # Script to download dataset
|
||||
│ ├── test_model.py # Script for quick model testing
|
||||
│ └── visualize_predictions.py # Script for prediction visualization
|
||||
├── tests/ # Unit tests
|
||||
│ ├── conftest.py # Test fixtures
|
||||
│ ├── test_data_utils.py # Tests for data utilities
|
||||
│ ├── test_model.py # Tests for model functionality
|
||||
│ └── test_visualization.py # Tests for visualization
|
||||
├── utils/ # Utility modules
|
||||
│ ├── common.py # Common functionality
|
||||
│ ├── data_utils.py # Dataset handling
|
||||
│ ├── eval_utils.py # Evaluation functions
|
||||
│ └── log_utils.py # Logging utilities
|
||||
├── train.py # Training script
|
||||
├── test.py # Evaluation script
|
||||
├── pyproject.toml # Project dependencies and configuration
|
||||
├── .pre-commit-config.yaml # Pre-commit configuration
|
||||
└── README.md # This file
|
||||
```
|
||||
|
||||
## Data Preparation
|
||||
|
||||
Download the Penn-Fudan pedestrian dataset:
|
||||
|
||||
```bash
|
||||
./scripts/download_data.sh
|
||||
```
|
||||
|
||||
This will download and extract the dataset to the `data/PennFudanPed` directory.
|
||||
|
||||
## Configuration
|
||||
|
||||
The project uses Python dictionaries for configuration:
|
||||
|
||||
- `configs/base_config.py`: Default configuration values
|
||||
- `configs/pennfudan_maskrcnn_config.py`: Configuration for training on Penn-Fudan
|
||||
- `configs/debug_config.py`: Configuration for quick testing (CPU, minimal training)
|
||||
|
||||
Key configuration parameters:
|
||||
|
||||
- `data_root`: Path to dataset
|
||||
- `output_dir`: Directory for outputs
|
||||
- `device`: Computing device ('cuda' or 'cpu')
|
||||
- `batch_size`: Batch size for training
|
||||
- `num_epochs`: Number of training epochs
|
||||
- `lr`, `momentum`, `weight_decay`: Optimizer parameters
|
||||
|
||||
## Training
|
||||
|
||||
Run the training script with a configuration file:
|
||||
|
||||
```bash
|
||||
python train.py --config configs/pennfudan_maskrcnn_config.py
|
||||
```
|
||||
|
||||
For quick debugging on CPU:
|
||||
|
||||
```bash
|
||||
python train.py --config configs/debug_config.py
|
||||
```
|
||||
|
||||
To resume training from the latest checkpoint:
|
||||
|
||||
```bash
|
||||
python train.py --config configs/pennfudan_maskrcnn_config.py --resume
|
||||
```
|
||||
|
||||
Training outputs (logs, checkpoints) are saved to `outputs/<config_name>/`.
|
||||
|
||||
## Evaluation
|
||||
|
||||
Evaluate a trained model:
|
||||
|
||||
```bash
|
||||
python test.py --config configs/pennfudan_maskrcnn_config.py --checkpoint outputs/pennfudan_maskrcnn_v1/checkpoints/checkpoint_epoch_10.pth
|
||||
```
|
||||
|
||||
This runs the model on the test dataset and reports metrics.
|
||||
|
||||
## Visualization
|
||||
|
||||
Visualize model predictions on images:
|
||||
|
||||
```bash
|
||||
python scripts/visualize_predictions.py --config configs/pennfudan_maskrcnn_config.py --checkpoint outputs/pennfudan_maskrcnn_v1/checkpoints/checkpoint_epoch_10.pth --index 0 --output prediction.png
|
||||
```
|
||||
|
||||
Parameters:
|
||||
- `--config`: Configuration file path
|
||||
- `--checkpoint`: Model checkpoint path
|
||||
- `--index`: Image index in dataset (default: 0)
|
||||
- `--threshold`: Detection confidence threshold (default: 0.5)
|
||||
- `--output`: Output image path (optional, displays interactively if not specified)
|
||||
|
||||
## Testing
|
||||
|
||||
Run all tests:
|
||||
|
||||
```bash
|
||||
python -m pytest
|
||||
```
|
||||
|
||||
Run specific test file:
|
||||
|
||||
```bash
|
||||
python -m pytest tests/test_data_utils.py
|
||||
```
|
||||
|
||||
Run tests with verbosity:
|
||||
|
||||
```bash
|
||||
python -m pytest -v
|
||||
```
|
||||
|
||||
## Debugging
|
||||
|
||||
For quick model testing without full training:
|
||||
|
||||
```bash
|
||||
python scripts/test_model.py
|
||||
```
|
||||
|
||||
This verifies:
|
||||
- Model creation
|
||||
- Forward pass
|
||||
- Backward pass
|
||||
- Dataset loading
|
||||
|
||||
For training with minimal resources:
|
||||
|
||||
```bash
|
||||
python train.py --config configs/debug_config.py
|
||||
```
|
||||
|
||||
This uses:
|
||||
- CPU computation
|
||||
- Minimal epochs (1)
|
||||
- Small batch size (1)
|
||||
- No multiprocessing
|
||||
|
||||
## Code Quality
|
||||
|
||||
Format code:
|
||||
|
||||
```bash
|
||||
ruff format .
|
||||
```
|
||||
|
||||
Run linter:
|
||||
|
||||
```bash
|
||||
ruff check .
|
||||
```
|
||||
|
||||
Fix auto-fixable issues:
|
||||
|
||||
```bash
|
||||
ruff check --fix .
|
||||
```
|
||||
|
||||
Run pre-commit checks:
|
||||
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
25
configs/debug_config.py
Normal file
25
configs/debug_config.py
Normal file
@@ -0,0 +1,25 @@
|
||||
from configs.base_config import base_config
|
||||
|
||||
# Create a debug configuration with minimal settings
|
||||
config = base_config.copy()
|
||||
|
||||
# Update settings for quick debugging
|
||||
config.update(
|
||||
{
|
||||
# Core configuration
|
||||
"config_name": "debug_run",
|
||||
"data_root": "data/PennFudanPed",
|
||||
"num_classes": 2, # background + pedestrian
|
||||
# Minimal training parameters
|
||||
"batch_size": 1,
|
||||
"num_epochs": 1, # Just one epoch for testing
|
||||
"val_split_ratio": 0.2, # Use more validation samples for better testing coverage
|
||||
# Performance optimizations
|
||||
"pin_memory": False,
|
||||
"num_workers": 0, # Use 0 workers to avoid multiprocessing complexities during debugging
|
||||
# Logging settings
|
||||
"log_freq": 1, # Log every batch for debugging
|
||||
# Device setting - use CPU for reliable debugging
|
||||
"device": "cpu", # Using CPU ensures consistent behavior across systems
|
||||
}
|
||||
)
|
||||
@@ -1,33 +1,34 @@
|
||||
"""
|
||||
Configuration for training Mask R-CNN on the Penn-Fudan dataset.
|
||||
Configuration for MaskRCNN training on the PennFudan Dataset.
|
||||
"""
|
||||
|
||||
from configs.base_config import base_config
|
||||
|
||||
# Create a copy of the base configuration
|
||||
config = base_config.copy()
|
||||
|
||||
# Update specific values for this experiment
|
||||
config.update(
|
||||
{
|
||||
# Core configuration
|
||||
"config_name": "pennfudan_maskrcnn_v1",
|
||||
config = {
|
||||
# Data settings
|
||||
"data_root": "data/PennFudanPed",
|
||||
"num_classes": 2, # background + pedestrian
|
||||
# Training parameters - modified for memory constraints
|
||||
"output_dir": "outputs",
|
||||
# Hardware settings
|
||||
"device": "cuda", # "cuda" or "cpu"
|
||||
# Model settings
|
||||
"num_classes": 2, # Background + person
|
||||
# Training settings
|
||||
"batch_size": 1, # Reduced from 2 to 1 to save memory
|
||||
"num_epochs": 10,
|
||||
"seed": 42,
|
||||
# Optimizer settings
|
||||
"lr": 0.002, # Slightly reduced learning rate for smaller batch size
|
||||
"lr": 0.002,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 0.0005,
|
||||
# Memory optimization settings
|
||||
"pin_memory": False, # Set to False to reduce memory pressure
|
||||
"num_workers": 2, # Reduced from 4 to 2
|
||||
# Device settings
|
||||
"device": "cuda",
|
||||
"lr_step_size": 3,
|
||||
"lr_gamma": 0.1,
|
||||
# Logging and checkpoints
|
||||
"log_freq": 10, # Log every N steps
|
||||
"checkpoint_freq": 1, # Save checkpoint every N epochs
|
||||
# Run identification
|
||||
"config_name": "pennfudan_maskrcnn_v1",
|
||||
# DataLoader settings
|
||||
"pin_memory": False, # Set to False to reduce memory usage
|
||||
"num_workers": 2, # Reduced from 4 to 2 to reduce memory pressure
|
||||
}
|
||||
)
|
||||
|
||||
# Ensure derived paths or settings are consistent if needed
|
||||
# (Not strictly necessary with this simple structure)
|
||||
|
||||
@@ -5,6 +5,7 @@ description = "Add your description here"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"matplotlib>=3.10.1",
|
||||
"numpy>=2.2.4",
|
||||
"pillow>=11.1.0",
|
||||
"pytest>=8.3.5",
|
||||
|
||||
152
scripts/test_model.py
Executable file
152
scripts/test_model.py
Executable file
@@ -0,0 +1,152 @@
|
||||
#!/usr/bin/env python
|
||||
"""
|
||||
Quick model testing script to verify model creation and inference.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
import torch
|
||||
|
||||
# Add project root to the path to enable imports
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||
|
||||
from models.detection import get_maskrcnn_model
|
||||
from utils.data_utils import PennFudanDataset, get_transform
|
||||
|
||||
|
||||
def test_model_creation():
|
||||
"""Test that we can create the model."""
|
||||
print("Testing model creation...")
|
||||
model = get_maskrcnn_model(
|
||||
num_classes=2, pretrained=False, pretrained_backbone=False
|
||||
)
|
||||
print("✓ Model created successfully")
|
||||
return model
|
||||
|
||||
|
||||
def test_model_forward(model, device):
|
||||
"""Test model forward pass with random inputs."""
|
||||
print("\nTesting model forward pass...")
|
||||
|
||||
# Create a random batch
|
||||
image = torch.rand(3, 300, 400, device=device) # Random image
|
||||
|
||||
# Create a random target
|
||||
target = {
|
||||
"boxes": torch.tensor(
|
||||
[[100, 100, 200, 200]], dtype=torch.float32, device=device
|
||||
),
|
||||
"labels": torch.tensor([1], dtype=torch.int64, device=device),
|
||||
"masks": torch.randint(0, 2, (1, 300, 400), dtype=torch.uint8, device=device),
|
||||
"image_id": torch.tensor([0], device=device),
|
||||
"area": torch.tensor([10000.0], dtype=torch.float32, device=device),
|
||||
"iscrowd": torch.tensor([0], dtype=torch.uint8, device=device),
|
||||
}
|
||||
|
||||
# Test inference mode (no targets)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
start_time = time.time()
|
||||
output_inference = model([image])
|
||||
inference_time = time.time() - start_time
|
||||
|
||||
# Verify inference output
|
||||
print(f"✓ Inference mode output: {type(output_inference)}")
|
||||
print(f"✓ Inference time: {inference_time:.3f}s")
|
||||
print(f"✓ Detection boxes shape: {output_inference[0]['boxes'].shape}")
|
||||
print(f"✓ Detection scores shape: {output_inference[0]['scores'].shape}")
|
||||
|
||||
# Test training mode (with targets)
|
||||
model.train()
|
||||
start_time = time.time()
|
||||
output_train = model([image], [target])
|
||||
train_time = time.time() - start_time
|
||||
|
||||
# Verify training output
|
||||
print(f"✓ Training mode output: {type(output_train)}")
|
||||
print(f"✓ Training time: {train_time:.3f}s")
|
||||
|
||||
# Print loss values
|
||||
for loss_name, loss_value in output_train.items():
|
||||
print(f"✓ {loss_name}: {loss_value.item():.4f}")
|
||||
|
||||
return output_train
|
||||
|
||||
|
||||
def test_model_backward(model, loss_dict, device):
|
||||
"""Test model backward pass."""
|
||||
print("\nTesting model backward pass...")
|
||||
|
||||
# Calculate total loss
|
||||
total_loss = sum(loss for loss in loss_dict.values())
|
||||
|
||||
# Create optimizer
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
|
||||
|
||||
# Backward pass
|
||||
start_time = time.time()
|
||||
optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
optimizer.step()
|
||||
backward_time = time.time() - start_time
|
||||
|
||||
print("✓ Backward pass and optimization completed")
|
||||
print(f"✓ Backward time: {backward_time:.3f}s")
|
||||
|
||||
# Check that gradients were calculated
|
||||
has_gradients = any(
|
||||
param.grad is not None for param in model.parameters() if param.requires_grad
|
||||
)
|
||||
print(f"✓ Model has gradients: {has_gradients}")
|
||||
|
||||
|
||||
def test_dataset():
|
||||
"""Test that we can load the dataset."""
|
||||
print("\nTesting dataset loading...")
|
||||
|
||||
data_root = "data/PennFudanPed"
|
||||
if not os.path.exists(data_root):
|
||||
print("✗ Dataset not found at", data_root)
|
||||
return None
|
||||
|
||||
# Create dataset
|
||||
dataset = PennFudanDataset(root=data_root, transforms=get_transform(train=True))
|
||||
print(f"✓ Dataset loaded with {len(dataset)} samples")
|
||||
|
||||
# Test loading a sample
|
||||
start_time = time.time()
|
||||
img, target = dataset[0]
|
||||
load_time = time.time() - start_time
|
||||
|
||||
print(f"✓ Sample loaded in {load_time:.3f}s")
|
||||
print(f"✓ Image shape: {img.shape}")
|
||||
print(f"✓ Target boxes shape: {target['boxes'].shape}")
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def main():
|
||||
"""Run all tests."""
|
||||
print("=== Quick Model Testing Script ===")
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
|
||||
# Run tests
|
||||
model = test_model_creation()
|
||||
model.to(device)
|
||||
|
||||
loss_dict = test_model_forward(model, device)
|
||||
|
||||
test_model_backward(model, loss_dict, device)
|
||||
|
||||
test_dataset()
|
||||
|
||||
print("\n=== All tests completed successfully ===")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
175
scripts/visualize_predictions.py
Executable file
175
scripts/visualize_predictions.py
Executable file
@@ -0,0 +1,175 @@
|
||||
#!/usr/bin/env python
|
||||
"""
|
||||
Visualization script for model predictions on the Penn-Fudan dataset.
|
||||
This helps visualize and debug model predictions.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
# Add project root to path for imports
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||
|
||||
from models.detection import get_maskrcnn_model
|
||||
from utils.common import load_checkpoint, load_config
|
||||
from utils.data_utils import PennFudanDataset, get_transform
|
||||
|
||||
|
||||
def visualize_prediction(image, prediction, threshold=0.5):
|
||||
"""
|
||||
Visualize model prediction on an image.
|
||||
|
||||
Args:
|
||||
image (torch.Tensor): The input image [C, H, W]
|
||||
prediction (dict): Model prediction dict with boxes, scores, labels, masks
|
||||
threshold (float): Score threshold for visualization
|
||||
|
||||
Returns:
|
||||
plt.Figure: The matplotlib figure with the visualization
|
||||
"""
|
||||
# Convert image from tensor to numpy
|
||||
img_np = image.permute(1, 2, 0).cpu().numpy()
|
||||
|
||||
# Denormalize if needed
|
||||
if img_np.max() <= 1.0:
|
||||
img_np = (img_np * 255).astype(np.uint8)
|
||||
|
||||
# Create figure and axes
|
||||
fig, ax = plt.subplots(1, 1, figsize=(12, 9))
|
||||
ax.imshow(img_np)
|
||||
ax.set_title("Model Predictions")
|
||||
|
||||
# Get predictions
|
||||
boxes = prediction["boxes"].cpu().numpy()
|
||||
scores = prediction["scores"].cpu().numpy()
|
||||
labels = prediction["labels"].cpu().numpy()
|
||||
masks = prediction["masks"].cpu().numpy()
|
||||
|
||||
# Filter by threshold
|
||||
mask = scores >= threshold
|
||||
boxes = boxes[mask]
|
||||
scores = scores[mask]
|
||||
labels = labels[mask]
|
||||
masks = masks[mask]
|
||||
|
||||
# Draw predictions
|
||||
for box, score, label, mask in zip(boxes, scores, labels, masks):
|
||||
# Draw box
|
||||
x1, y1, x2, y2 = box
|
||||
rect = plt.Rectangle(
|
||||
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="red", linewidth=2
|
||||
)
|
||||
ax.add_patch(rect)
|
||||
|
||||
# Add label and score
|
||||
ax.text(
|
||||
x1, y1, f"Person: {score:.2f}", bbox=dict(facecolor="yellow", alpha=0.5)
|
||||
)
|
||||
|
||||
# Draw mask (with transparency)
|
||||
mask = mask[0] > 0.5 # Threshold mask
|
||||
mask_color = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8)
|
||||
mask_color[mask] = [255, 0, 0] # Red color
|
||||
ax.imshow(mask_color, alpha=0.3)
|
||||
|
||||
# Show count of detections
|
||||
ax.set_xlabel(f"Found {len(boxes)} pedestrians with confidence >= {threshold}")
|
||||
|
||||
plt.tight_layout()
|
||||
return fig
|
||||
|
||||
|
||||
def run_inference(model, dataset, device, idx=0):
|
||||
"""
|
||||
Run inference on a single image from the dataset.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model
|
||||
dataset (PennFudanDataset): The dataset
|
||||
device (torch.device): The device
|
||||
idx (int): Index of the image to test
|
||||
|
||||
Returns:
|
||||
tuple: (image, prediction)
|
||||
"""
|
||||
# Get image
|
||||
image, _ = dataset[idx]
|
||||
|
||||
# Prepare for model
|
||||
image = image.to(device)
|
||||
|
||||
# Run inference
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
prediction = model([image])[0]
|
||||
|
||||
return image, prediction
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point."""
|
||||
parser = argparse.ArgumentParser(description="Visualize model predictions")
|
||||
parser.add_argument("--config", required=True, help="Path to config file")
|
||||
parser.add_argument("--checkpoint", required=True, help="Path to checkpoint file")
|
||||
parser.add_argument("--index", type=int, default=0, help="Image index to visualize")
|
||||
parser.add_argument("--threshold", type=float, default=0.5, help="Score threshold")
|
||||
parser.add_argument("--output", help="Path to save visualization image")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load config
|
||||
config = load_config(args.config)
|
||||
|
||||
# Setup device
|
||||
device = torch.device(config.get("device", "cpu"))
|
||||
print(f"Using device: {device}")
|
||||
|
||||
# Create model
|
||||
model = get_maskrcnn_model(
|
||||
num_classes=config.get("num_classes", 2),
|
||||
pretrained=False,
|
||||
pretrained_backbone=False,
|
||||
)
|
||||
|
||||
# Load checkpoint
|
||||
checkpoint, _ = load_checkpoint(args.checkpoint, model, device)
|
||||
model.to(device)
|
||||
print(f"Loaded checkpoint from: {args.checkpoint}")
|
||||
|
||||
# Create dataset
|
||||
data_root = config.get("data_root", "data/PennFudanPed")
|
||||
if not os.path.exists(data_root):
|
||||
print(f"Error: Data not found at {data_root}")
|
||||
return
|
||||
|
||||
dataset = PennFudanDataset(root=data_root, transforms=get_transform(train=False))
|
||||
print(f"Dataset loaded with {len(dataset)} images")
|
||||
|
||||
# Validate index
|
||||
if args.index < 0 or args.index >= len(dataset):
|
||||
print(f"Error: Index {args.index} out of range (0-{len(dataset)-1})")
|
||||
return
|
||||
|
||||
# Run inference
|
||||
print(f"Running inference on image {args.index}...")
|
||||
image, prediction = run_inference(model, dataset, device, args.index)
|
||||
|
||||
# Visualize prediction
|
||||
print("Visualizing predictions...")
|
||||
fig = visualize_prediction(image, prediction, threshold=args.threshold)
|
||||
|
||||
# Save or show
|
||||
if args.output:
|
||||
fig.savefig(args.output)
|
||||
print(f"Visualization saved to: {args.output}")
|
||||
else:
|
||||
plt.show()
|
||||
print("Visualization displayed. Close window to continue.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
23
test.py
23
test.py
@@ -31,6 +31,8 @@ def main(args):
|
||||
logging.info(f"Loaded configuration from: {args.config}")
|
||||
logging.info(f"Checkpoint path: {args.checkpoint}")
|
||||
logging.info(f"Loaded configuration dictionary: {config}")
|
||||
if args.max_samples:
|
||||
logging.info(f"Limiting evaluation to {args.max_samples} samples")
|
||||
|
||||
# Validate data path
|
||||
data_root = config.get("data_root")
|
||||
@@ -86,12 +88,15 @@ def main(args):
|
||||
# Run Evaluation
|
||||
try:
|
||||
logging.info("Starting model evaluation...")
|
||||
eval_metrics = evaluate(model, data_loader_test, device)
|
||||
eval_metrics = evaluate(model, data_loader_test, device, args.max_samples)
|
||||
|
||||
# Log detailed metrics
|
||||
logging.info("--- Evaluation Results ---")
|
||||
for metric_name, metric_value in eval_metrics.items():
|
||||
if isinstance(metric_value, (int, float)):
|
||||
logging.info(f" {metric_name}: {metric_value:.4f}")
|
||||
else:
|
||||
logging.info(f" {metric_name}: {metric_value}")
|
||||
|
||||
logging.info("Evaluation completed successfully")
|
||||
except Exception as e:
|
||||
@@ -100,10 +105,20 @@ def main(args):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Test a trained Mask R-CNN model")
|
||||
parser.add_argument("--config", required=True, help="Path to configuration file")
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Test script for torchvision Mask R-CNN"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--checkpoint", required=True, help="Path to model checkpoint file (.pth)"
|
||||
"--config", required=True, type=str, help="Path to configuration file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--checkpoint", required=True, type=str, help="Path to model checkpoint"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_samples",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Maximum number of samples to evaluate",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
BIN
test_prediction.png
Normal file
BIN
test_prediction.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 944 KiB |
@@ -0,0 +1,56 @@
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
# Add project root to the path to enable imports
|
||||
project_root = Path(__file__).parent.parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from models.detection import get_maskrcnn_model # noqa: E402
|
||||
from utils.data_utils import PennFudanDataset, get_transform # noqa: E402
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def device():
|
||||
"""Return CPU device for consistent testing."""
|
||||
return torch.device("cpu")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def test_config():
|
||||
"""Return a minimal config dictionary for testing."""
|
||||
return {
|
||||
"data_root": "data/PennFudanPed",
|
||||
"num_classes": 2,
|
||||
"batch_size": 1,
|
||||
"device": "cpu",
|
||||
"output_dir": "test_outputs",
|
||||
"config_name": "test_run",
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def small_model(device):
|
||||
"""Return a small Mask R-CNN model for testing."""
|
||||
model = get_maskrcnn_model(
|
||||
num_classes=2, pretrained=False, pretrained_backbone=False
|
||||
)
|
||||
model.to(device)
|
||||
return model
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_dataset():
|
||||
"""Return a small dataset for testing if available."""
|
||||
data_root = "data/PennFudanPed"
|
||||
|
||||
# Skip if data is not available
|
||||
if not os.path.exists(data_root):
|
||||
pytest.skip("Test dataset not available")
|
||||
|
||||
transforms = get_transform(train=False)
|
||||
dataset = PennFudanDataset(root=data_root, transforms=transforms)
|
||||
return dataset
|
||||
|
||||
108
tests/test_data_utils.py
Normal file
108
tests/test_data_utils.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import torch
|
||||
|
||||
from utils.data_utils import collate_fn, get_transform
|
||||
|
||||
|
||||
def test_dataset_len(sample_dataset):
|
||||
"""Test that the dataset has the expected length."""
|
||||
# PennFudanPed has 170 images
|
||||
assert len(sample_dataset) > 0, "Dataset should not be empty"
|
||||
|
||||
|
||||
def test_dataset_getitem(sample_dataset):
|
||||
"""Test that __getitem__ returns expected format."""
|
||||
if len(sample_dataset) == 0:
|
||||
return # Skip if no data
|
||||
|
||||
# Get first item
|
||||
img, target = sample_dataset[0]
|
||||
|
||||
# Check image
|
||||
assert isinstance(img, torch.Tensor), "Image should be a tensor"
|
||||
assert img.dim() == 3, "Image should have 3 dimensions (C, H, W)"
|
||||
assert img.shape[0] == 3, "Image should have 3 channels (RGB)"
|
||||
|
||||
# Check target
|
||||
assert isinstance(target, dict), "Target should be a dictionary"
|
||||
assert "boxes" in target, "Target should contain 'boxes'"
|
||||
assert "labels" in target, "Target should contain 'labels'"
|
||||
assert "masks" in target, "Target should contain 'masks'"
|
||||
assert "image_id" in target, "Target should contain 'image_id'"
|
||||
assert "area" in target, "Target should contain 'area'"
|
||||
assert "iscrowd" in target, "Target should contain 'iscrowd'"
|
||||
|
||||
# Check target values
|
||||
assert (
|
||||
target["boxes"].shape[1] == 4
|
||||
), "Boxes should have 4 coordinates (x1, y1, x2, y2)"
|
||||
assert target["labels"].dim() == 1, "Labels should be a 1D tensor"
|
||||
assert target["masks"].dim() == 3, "Masks should be a 3D tensor (N, H, W)"
|
||||
|
||||
|
||||
def test_transforms(sample_dataset):
|
||||
"""Test that transforms are applied correctly."""
|
||||
if len(sample_dataset) == 0:
|
||||
return # Skip if no data
|
||||
|
||||
# Get original transform
|
||||
orig_transforms = sample_dataset.transforms
|
||||
|
||||
# Apply different transforms
|
||||
train_transforms = get_transform(train=True)
|
||||
eval_transforms = get_transform(train=False)
|
||||
|
||||
# Test that we can switch transforms
|
||||
sample_dataset.transforms = train_transforms
|
||||
img_train, target_train = sample_dataset[0]
|
||||
|
||||
sample_dataset.transforms = eval_transforms
|
||||
img_eval, target_eval = sample_dataset[0]
|
||||
|
||||
# Restore original transforms
|
||||
sample_dataset.transforms = orig_transforms
|
||||
|
||||
# Images should be tensors with expected properties
|
||||
assert img_train.dim() == img_eval.dim() == 3
|
||||
assert img_train.shape[0] == img_eval.shape[0] == 3
|
||||
|
||||
|
||||
def test_collate_fn():
|
||||
"""Test the collate function."""
|
||||
# Create dummy batch data
|
||||
dummy_img1 = torch.rand(3, 100, 100)
|
||||
dummy_img2 = torch.rand(3, 100, 100)
|
||||
|
||||
dummy_target1 = {
|
||||
"boxes": torch.tensor([[10, 10, 50, 50]], dtype=torch.float32),
|
||||
"labels": torch.tensor([1], dtype=torch.int64),
|
||||
"masks": torch.zeros(1, 100, 100, dtype=torch.uint8),
|
||||
"image_id": torch.tensor([0]),
|
||||
"area": torch.tensor([1600.0], dtype=torch.float32),
|
||||
"iscrowd": torch.tensor([0], dtype=torch.uint8),
|
||||
}
|
||||
|
||||
dummy_target2 = {
|
||||
"boxes": torch.tensor([[20, 20, 60, 60]], dtype=torch.float32),
|
||||
"labels": torch.tensor([1], dtype=torch.int64),
|
||||
"masks": torch.zeros(1, 100, 100, dtype=torch.uint8),
|
||||
"image_id": torch.tensor([1]),
|
||||
"area": torch.tensor([1600.0], dtype=torch.float32),
|
||||
"iscrowd": torch.tensor([0], dtype=torch.uint8),
|
||||
}
|
||||
|
||||
batch = [(dummy_img1, dummy_target1), (dummy_img2, dummy_target2)]
|
||||
|
||||
# Apply collate_fn
|
||||
images, targets = collate_fn(batch)
|
||||
|
||||
# Check results
|
||||
assert len(images) == 2, "Should have 2 images"
|
||||
assert len(targets) == 2, "Should have 2 targets"
|
||||
assert torch.allclose(images[0], dummy_img1), "First image should match"
|
||||
assert torch.allclose(images[1], dummy_img2), "Second image should match"
|
||||
assert torch.allclose(
|
||||
targets[0]["boxes"], dummy_target1["boxes"]
|
||||
), "First boxes should match"
|
||||
assert torch.allclose(
|
||||
targets[1]["boxes"], dummy_target2["boxes"]
|
||||
), "Second boxes should match"
|
||||
102
tests/test_model.py
Normal file
102
tests/test_model.py
Normal file
@@ -0,0 +1,102 @@
|
||||
import torch
|
||||
import torchvision
|
||||
|
||||
from utils.eval_utils import evaluate
|
||||
|
||||
|
||||
def test_model_creation(small_model):
|
||||
"""Test that the model is created correctly."""
|
||||
assert isinstance(small_model, torchvision.models.detection.MaskRCNN)
|
||||
assert small_model.roi_heads.box_predictor.cls_score.out_features == 2
|
||||
assert small_model.roi_heads.mask_predictor.mask_fcn_logits.out_channels == 2
|
||||
|
||||
|
||||
def test_model_forward_train_mode(small_model, sample_dataset, device):
|
||||
"""Test model forward pass in training mode."""
|
||||
if len(sample_dataset) == 0:
|
||||
return # Skip if no data
|
||||
|
||||
# Set model to training mode
|
||||
small_model.train()
|
||||
|
||||
# Get a batch
|
||||
img, target = sample_dataset[0]
|
||||
img = img.to(device)
|
||||
target = {k: v.to(device) for k, v in target.items()}
|
||||
|
||||
# Forward pass with targets should return loss dict in training mode
|
||||
loss_dict = small_model([img], [target])
|
||||
|
||||
# Verify loss dict structure
|
||||
assert isinstance(loss_dict, dict), "Loss should be a dictionary"
|
||||
assert "loss_classifier" in loss_dict, "Should have classifier loss"
|
||||
assert "loss_box_reg" in loss_dict, "Should have box regression loss"
|
||||
assert "loss_mask" in loss_dict, "Should have mask loss"
|
||||
assert "loss_objectness" in loss_dict, "Should have objectness loss"
|
||||
assert "loss_rpn_box_reg" in loss_dict, "Should have RPN box regression loss"
|
||||
|
||||
# Verify loss values
|
||||
for loss_name, loss_value in loss_dict.items():
|
||||
assert isinstance(loss_value, torch.Tensor), f"{loss_name} should be a tensor"
|
||||
assert loss_value.dim() == 0, f"{loss_name} should be a scalar tensor"
|
||||
assert not torch.isnan(loss_value), f"{loss_name} should not be NaN"
|
||||
assert not torch.isinf(loss_value), f"{loss_name} should not be infinite"
|
||||
|
||||
|
||||
def test_model_forward_eval_mode(small_model, sample_dataset, device):
|
||||
"""Test model forward pass in evaluation mode."""
|
||||
if len(sample_dataset) == 0:
|
||||
return # Skip if no data
|
||||
|
||||
# Set model to evaluation mode
|
||||
small_model.eval()
|
||||
|
||||
# Get a batch
|
||||
img, target = sample_dataset[0]
|
||||
img = img.to(device)
|
||||
|
||||
# Forward pass without targets should return predictions in eval mode
|
||||
with torch.no_grad():
|
||||
predictions = small_model([img])
|
||||
|
||||
# Verify predictions structure
|
||||
assert isinstance(predictions, list), "Predictions should be a list"
|
||||
assert len(predictions) == 1, "Should have predictions for 1 image"
|
||||
|
||||
pred = predictions[0]
|
||||
assert "boxes" in pred, "Predictions should contain 'boxes'"
|
||||
assert "scores" in pred, "Predictions should contain 'scores'"
|
||||
assert "labels" in pred, "Predictions should contain 'labels'"
|
||||
assert "masks" in pred, "Predictions should contain 'masks'"
|
||||
|
||||
|
||||
def test_evaluate_function(small_model, sample_dataset, device):
|
||||
"""Test the evaluate function."""
|
||||
if len(sample_dataset) == 0:
|
||||
return # Skip if no data
|
||||
|
||||
# Create a tiny dataloader for testing
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from utils.data_utils import collate_fn
|
||||
|
||||
# Use only 2 samples for quick testing
|
||||
small_ds = torch.utils.data.Subset(
|
||||
sample_dataset, range(min(2, len(sample_dataset)))
|
||||
)
|
||||
dataloader = DataLoader(
|
||||
small_ds, batch_size=1, shuffle=False, collate_fn=collate_fn
|
||||
)
|
||||
|
||||
# Set model to eval mode
|
||||
small_model.eval()
|
||||
|
||||
# Import evaluate function
|
||||
|
||||
# Run evaluation
|
||||
metrics = evaluate(small_model, dataloader, device)
|
||||
|
||||
# Check results
|
||||
assert isinstance(metrics, dict), "Metrics should be a dictionary"
|
||||
assert "average_loss" in metrics, "Metrics should contain 'average_loss'"
|
||||
assert metrics["average_loss"] >= 0, "Loss should be non-negative"
|
||||
77
tests/test_visualization.py
Normal file
77
tests/test_visualization.py
Normal file
@@ -0,0 +1,77 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
|
||||
# Import visualization functions
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||
from scripts.visualize_predictions import visualize_prediction # noqa: E402
|
||||
|
||||
|
||||
def test_visualize_prediction():
|
||||
"""Test that the visualization function works."""
|
||||
# Create a dummy image tensor
|
||||
image = torch.rand(3, 400, 600)
|
||||
|
||||
# Create a dummy prediction dictionary
|
||||
prediction = {
|
||||
"boxes": torch.tensor(
|
||||
[[100, 100, 200, 200], [300, 300, 400, 400]], dtype=torch.float32
|
||||
),
|
||||
"scores": torch.tensor([0.9, 0.7], dtype=torch.float32),
|
||||
"labels": torch.tensor([1, 1], dtype=torch.int64),
|
||||
"masks": torch.zeros(2, 1, 400, 600, dtype=torch.float32),
|
||||
}
|
||||
|
||||
# Set some pixels in the mask to 1
|
||||
prediction["masks"][0, 0, 100:200, 100:200] = 1.0
|
||||
prediction["masks"][1, 0, 300:400, 300:400] = 1.0
|
||||
|
||||
# Call the visualization function
|
||||
fig = visualize_prediction(image, prediction, threshold=0.5)
|
||||
|
||||
# Check that a figure was returned
|
||||
assert isinstance(fig, plt.Figure)
|
||||
|
||||
# Check figure properties
|
||||
assert len(fig.axes) == 1
|
||||
|
||||
# Close the figure to avoid memory leaks
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
def test_visualize_prediction_threshold():
|
||||
"""Test that the threshold parameter filters predictions correctly."""
|
||||
# Create a dummy image tensor
|
||||
image = torch.rand(3, 400, 600)
|
||||
|
||||
# Create a dummy prediction dictionary with varying scores
|
||||
prediction = {
|
||||
"boxes": torch.tensor(
|
||||
[[100, 100, 200, 200], [300, 300, 400, 400], [500, 100, 550, 150]],
|
||||
dtype=torch.float32,
|
||||
),
|
||||
"scores": torch.tensor([0.9, 0.7, 0.3], dtype=torch.float32),
|
||||
"labels": torch.tensor([1, 1, 1], dtype=torch.int64),
|
||||
"masks": torch.zeros(3, 1, 400, 600, dtype=torch.float32),
|
||||
}
|
||||
|
||||
# Call the visualization function with different thresholds
|
||||
fig_low = visualize_prediction(image, prediction, threshold=0.2)
|
||||
fig_med = visualize_prediction(image, prediction, threshold=0.5)
|
||||
fig_high = visualize_prediction(image, prediction, threshold=0.8)
|
||||
|
||||
# Low threshold should show all 3 boxes
|
||||
assert "Found 3" in fig_low.axes[0].get_xlabel()
|
||||
|
||||
# Medium threshold should show 2 boxes
|
||||
assert "Found 2" in fig_med.axes[0].get_xlabel()
|
||||
|
||||
# High threshold should show 1 box
|
||||
assert "Found 1" in fig_high.axes[0].get_xlabel()
|
||||
|
||||
# Close figures
|
||||
plt.close(fig_low)
|
||||
plt.close(fig_med)
|
||||
plt.close(fig_high)
|
||||
@@ -18,80 +18,91 @@ class PennFudanDataset(torch.utils.data.Dataset):
|
||||
self.masks = sorted(list(os.listdir(os.path.join(root, "PedMasks"))))
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# Load images and masks
|
||||
"""Get a sample from the dataset.
|
||||
|
||||
Args:
|
||||
idx (int): Index of the sample to retrieve.
|
||||
|
||||
Returns:
|
||||
tuple: (image, target) where target is a dictionary containing various object annotations.
|
||||
"""
|
||||
# Load image
|
||||
img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
|
||||
mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
|
||||
|
||||
# Use PIL to load images (more memory efficient)
|
||||
img = Image.open(img_path).convert("RGB")
|
||||
# Note: Masks are not converted to RGB, contains index values
|
||||
mask = Image.open(mask_path)
|
||||
|
||||
# Convert mask to numpy array
|
||||
# Convert mask PIL image to numpy array
|
||||
mask = np.array(mask)
|
||||
# Instances are encoded as different colors
|
||||
|
||||
# Find all object instances (each instance has a unique value in the mask)
|
||||
# Value 0 is the background
|
||||
obj_ids = np.unique(mask)
|
||||
# First id is the background, so remove it
|
||||
obj_ids = obj_ids[1:]
|
||||
obj_ids = obj_ids[1:] # Remove background (id=0)
|
||||
|
||||
# Split the color-encoded mask into a set of binary masks
|
||||
binary_masks = mask == obj_ids[:, None, None]
|
||||
# Split the mask into binary masks for each object instance
|
||||
masks = mask == obj_ids[:, None, None]
|
||||
|
||||
# Get bounding box coordinates for each mask
|
||||
# Get bounding box for each mask
|
||||
num_objs = len(obj_ids)
|
||||
boxes = []
|
||||
|
||||
for i in range(num_objs):
|
||||
pos = np.where(binary_masks[i])
|
||||
pos = np.where(masks[i])
|
||||
if len(pos[0]) == 0 or len(pos[1]) == 0: # Skip empty masks
|
||||
continue
|
||||
|
||||
xmin = np.min(pos[1])
|
||||
xmax = np.max(pos[1])
|
||||
ymin = np.min(pos[0])
|
||||
ymax = np.max(pos[0])
|
||||
# Filter out potentially empty masks or masks with zero area
|
||||
if xmax > xmin and ymax > ymin:
|
||||
|
||||
# Skip boxes with zero area
|
||||
if xmax <= xmin or ymax <= ymin:
|
||||
continue
|
||||
|
||||
boxes.append([xmin, ymin, xmax, ymax])
|
||||
else:
|
||||
# If box is invalid, we might need to handle this
|
||||
# For now, let's remove the corresponding mask as well
|
||||
# This requires careful index handling if filtering occurs
|
||||
# A safer approach might be to filter masks *after* box generation
|
||||
# Let's recalculate binary_masks based on valid boxes later if needed
|
||||
pass # placeholder for potential filtering logic
|
||||
|
||||
# Ensure boxes list isn't empty if filtering happened
|
||||
if not boxes:
|
||||
# Handle case with no valid boxes found - return dummy target? Or raise error?
|
||||
# For now, let's create dummy tensors. This should be revisited.
|
||||
print(
|
||||
f"Warning: No valid boxes found for image {idx}. Returning dummy target."
|
||||
)
|
||||
boxes = torch.zeros((0, 4), dtype=torch.float32)
|
||||
labels = torch.zeros((0,), dtype=torch.int64)
|
||||
binary_masks = torch.zeros(
|
||||
(0, mask.shape[0], mask.shape[1]), dtype=torch.uint8
|
||||
)
|
||||
image_id = torch.tensor([idx])
|
||||
area = torch.zeros((0,), dtype=torch.float32)
|
||||
iscrowd = torch.zeros((0,), dtype=torch.uint8)
|
||||
else:
|
||||
# Convert everything to tensors
|
||||
if boxes:
|
||||
boxes = torch.as_tensor(boxes, dtype=torch.float32)
|
||||
# There is only one class (pedestrian)
|
||||
labels = torch.ones((num_objs,), dtype=torch.int64)
|
||||
binary_masks = torch.as_tensor(binary_masks, dtype=torch.uint8)
|
||||
image_id = torch.tensor([idx])
|
||||
# Calculate area
|
||||
labels = torch.ones(
|
||||
(len(boxes),), dtype=torch.int64
|
||||
) # All objects are pedestrians (class 1)
|
||||
masks = torch.as_tensor(masks, dtype=torch.uint8)
|
||||
|
||||
# Calculate area of each box
|
||||
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
|
||||
# Assume all instances are not crowd
|
||||
iscrowd = torch.zeros((num_objs,), dtype=torch.uint8)
|
||||
|
||||
target = {}
|
||||
target["boxes"] = boxes
|
||||
target["labels"] = labels
|
||||
target["masks"] = binary_masks
|
||||
target["image_id"] = image_id
|
||||
target["area"] = area
|
||||
target["iscrowd"] = iscrowd
|
||||
# All instances are not crowd
|
||||
iscrowd = torch.zeros((len(boxes),), dtype=torch.uint8)
|
||||
|
||||
# Create the target dictionary
|
||||
target = {
|
||||
"boxes": boxes,
|
||||
"labels": labels,
|
||||
"masks": masks,
|
||||
"image_id": torch.tensor([idx]),
|
||||
"area": area,
|
||||
"iscrowd": iscrowd,
|
||||
}
|
||||
else:
|
||||
# Handle case with no valid objects (rare but possible)
|
||||
target = {
|
||||
"boxes": torch.zeros((0, 4), dtype=torch.float32),
|
||||
"labels": torch.zeros((0,), dtype=torch.int64),
|
||||
"masks": torch.zeros(
|
||||
(0, mask.shape[0], mask.shape[1]), dtype=torch.uint8
|
||||
),
|
||||
"image_id": torch.tensor([idx]),
|
||||
"area": torch.zeros((0,), dtype=torch.float32),
|
||||
"iscrowd": torch.zeros((0,), dtype=torch.uint8),
|
||||
}
|
||||
|
||||
# Apply transforms if provided
|
||||
if self.transforms is not None:
|
||||
# Apply transforms to both image and target
|
||||
# Note: torchvision v2 transforms handle target dicts automatically
|
||||
img, target = self.transforms(img, target)
|
||||
|
||||
return img, target
|
||||
@@ -117,15 +128,18 @@ def get_transform(train):
|
||||
# Convert to PyTorch tensor and normalize
|
||||
transforms.append(T.ToImage())
|
||||
|
||||
# Add resize transform to reduce memory usage (max size of 800px)
|
||||
transforms.append(T.Resize(800))
|
||||
# Resize images to control memory usage
|
||||
# Use a smaller size for training (more memory-intensive due to gradients)
|
||||
if train:
|
||||
transforms.append(T.Resize(700))
|
||||
else:
|
||||
transforms.append(T.Resize(800)) # Can use larger size for eval
|
||||
|
||||
transforms.append(T.ToDtype(torch.float32, scale=True))
|
||||
|
||||
# Data augmentation for training
|
||||
if train:
|
||||
transforms.append(T.RandomHorizontalFlip(0.5))
|
||||
# Could add more augmentations here if desired
|
||||
|
||||
return T.Compose(transforms)
|
||||
|
||||
|
||||
@@ -1,36 +1,84 @@
|
||||
import logging
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torchvision.ops import box_iou
|
||||
|
||||
|
||||
def evaluate(model, data_loader, device):
|
||||
def evaluate(model, data_loader, device, max_samples=None):
|
||||
"""Performs evaluation on the dataset for one epoch.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model to evaluate.
|
||||
data_loader (torch.utils.data.DataLoader): DataLoader for the evaluation data.
|
||||
device (torch.device): The device to run evaluation on.
|
||||
max_samples (int, optional): Maximum number of batches to evaluate. If None, evaluate all.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing evaluation metrics (e.g., average loss).
|
||||
dict: A dictionary containing evaluation metrics (e.g., average loss, mAP).
|
||||
"""
|
||||
model.eval() # Set model to evaluation mode
|
||||
total_loss = 0.0
|
||||
num_batches = len(data_loader)
|
||||
|
||||
# Limit evaluation samples if specified
|
||||
if max_samples is not None:
|
||||
num_batches = min(num_batches, max_samples)
|
||||
logging.info(f"Limiting evaluation to {num_batches} batches")
|
||||
|
||||
eval_start_time = time.time()
|
||||
status_interval = max(1, num_batches // 10) # Log status roughly 10 times
|
||||
|
||||
# Initialize metrics collection
|
||||
inference_times = []
|
||||
|
||||
# IoU thresholds for mAP calculation
|
||||
iou_thresholds = [0.5, 0.75, 0.5] # 0.5, 0.75, 0.5:0.95 (COCO standard)
|
||||
confidence_thresholds = [0.5, 0.75, 0.9] # Different confidence thresholds
|
||||
|
||||
# Initialize counters for metrics
|
||||
metric_accumulators = initialize_metric_accumulators(
|
||||
iou_thresholds, confidence_thresholds
|
||||
)
|
||||
|
||||
logging.info("--- Starting Evaluation --- ")
|
||||
|
||||
with torch.no_grad(): # Disable gradient calculations
|
||||
for i, (images, targets) in enumerate(data_loader):
|
||||
# Stop if we've reached the max samples
|
||||
if max_samples is not None and i >= max_samples:
|
||||
break
|
||||
|
||||
# Free cached memory
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
images = list(image.to(device) for image in images)
|
||||
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
||||
|
||||
# In eval mode with targets, Mask R-CNN should still return losses
|
||||
# If it returned predictions, logic here would change to process predictions
|
||||
# Measure inference time
|
||||
start_time = time.time()
|
||||
# Get predictions in eval mode
|
||||
predictions = model(images)
|
||||
inference_time = time.time() - start_time
|
||||
inference_times.append(inference_time)
|
||||
|
||||
# Process metrics on-the-fly for this batch only
|
||||
process_batch_metrics(
|
||||
predictions,
|
||||
targets,
|
||||
metric_accumulators,
|
||||
iou_thresholds,
|
||||
confidence_thresholds,
|
||||
)
|
||||
|
||||
# Compute losses (switch to train mode temporarily)
|
||||
model.train()
|
||||
loss_dict = model(images, targets)
|
||||
model.eval()
|
||||
|
||||
# Calculate total loss
|
||||
losses = sum(loss for loss in loss_dict.values())
|
||||
loss_value = losses.item()
|
||||
total_loss += loss_value
|
||||
@@ -38,18 +86,727 @@ def evaluate(model, data_loader, device):
|
||||
if (i + 1) % status_interval == 0:
|
||||
logging.info(f" Evaluated batch {i + 1}/{num_batches}")
|
||||
|
||||
# Explicitly clean up to help with memory
|
||||
del images, targets, predictions, loss_dict
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Calculate basic metrics
|
||||
avg_loss = total_loss / num_batches if num_batches > 0 else 0
|
||||
avg_inference_time = np.mean(inference_times) if inference_times else 0
|
||||
|
||||
# Calculate final metrics from accumulators
|
||||
metrics = {
|
||||
"average_loss": avg_loss,
|
||||
"average_inference_time": avg_inference_time,
|
||||
}
|
||||
|
||||
# Compute final metrics from accumulators
|
||||
metrics.update(finalize_metrics(metric_accumulators))
|
||||
|
||||
eval_duration = time.time() - eval_start_time
|
||||
|
||||
# Log results
|
||||
logging.info("--- Evaluation Finished ---")
|
||||
logging.info(f" Average Evaluation Loss: {avg_loss:.4f}")
|
||||
logging.info(f" Average Inference Time: {avg_inference_time:.4f}s per batch")
|
||||
|
||||
# Log detailed metrics
|
||||
for metric_name, metric_value in metrics.items():
|
||||
if metric_name != "average_loss": # Already logged
|
||||
if isinstance(metric_value, (int, float)):
|
||||
logging.info(f" {metric_name}: {metric_value:.4f}")
|
||||
else:
|
||||
logging.info(f" {metric_name}: {metric_value}")
|
||||
|
||||
logging.info(f" Evaluation Duration: {eval_duration:.2f}s")
|
||||
|
||||
# Return metrics (currently just average loss)
|
||||
metrics = {"average_loss": avg_loss}
|
||||
return metrics
|
||||
|
||||
|
||||
def initialize_metric_accumulators(iou_thresholds, confidence_thresholds):
|
||||
"""Initialize accumulators for incremental metric calculation"""
|
||||
accumulators = {
|
||||
"total_gt": 0,
|
||||
"map_accumulators": {},
|
||||
"conf_accumulators": {},
|
||||
"size_accumulators": {
|
||||
"small_gt": 0,
|
||||
"medium_gt": 0,
|
||||
"large_gt": 0,
|
||||
"small_tp": 0,
|
||||
"medium_tp": 0,
|
||||
"large_tp": 0,
|
||||
"small_det": 0,
|
||||
"medium_det": 0,
|
||||
"large_det": 0,
|
||||
},
|
||||
}
|
||||
|
||||
# Initialize map accumulators for each IoU threshold
|
||||
for iou in iou_thresholds:
|
||||
accumulators["map_accumulators"][iou] = {
|
||||
"true_positives": 0,
|
||||
"false_positives": 0,
|
||||
"total_detections": 0,
|
||||
}
|
||||
|
||||
# Initialize confidence accumulators
|
||||
for conf in confidence_thresholds:
|
||||
accumulators["conf_accumulators"][conf] = {
|
||||
"true_positives": 0,
|
||||
"detections": 0,
|
||||
}
|
||||
|
||||
return accumulators
|
||||
|
||||
|
||||
def process_batch_metrics(
|
||||
predictions, targets, accumulators, iou_thresholds, confidence_thresholds
|
||||
):
|
||||
"""Process metrics for a single batch incrementally"""
|
||||
small_threshold = 32 * 32 # Small objects: area < 32²
|
||||
medium_threshold = 96 * 96 # Medium objects: 32² <= area < 96²
|
||||
|
||||
# Count total ground truth boxes in this batch
|
||||
batch_gt = sum(len(target["boxes"]) for target in targets)
|
||||
accumulators["total_gt"] += batch_gt
|
||||
|
||||
# Process all predictions in the batch
|
||||
for pred, target in zip(predictions, targets):
|
||||
pred_boxes = pred["boxes"]
|
||||
pred_scores = pred["scores"]
|
||||
pred_labels = pred["labels"]
|
||||
gt_boxes = target["boxes"]
|
||||
gt_labels = target["labels"]
|
||||
|
||||
# Skip if no predictions or no ground truth
|
||||
if len(pred_boxes) == 0 or len(gt_boxes) == 0:
|
||||
continue
|
||||
|
||||
# Calculate IoU between predictions and ground truth
|
||||
iou_matrix = box_iou(pred_boxes, gt_boxes)
|
||||
|
||||
# Process size-based metrics
|
||||
gt_areas = target.get("area", None)
|
||||
if gt_areas is None:
|
||||
# Calculate if not provided
|
||||
gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (
|
||||
gt_boxes[:, 3] - gt_boxes[:, 1]
|
||||
)
|
||||
|
||||
# Count ground truth by size
|
||||
small_mask_gt = gt_areas < small_threshold
|
||||
medium_mask_gt = (gt_areas >= small_threshold) & (gt_areas < medium_threshold)
|
||||
large_mask_gt = gt_areas >= medium_threshold
|
||||
|
||||
accumulators["size_accumulators"]["small_gt"] += torch.sum(small_mask_gt).item()
|
||||
accumulators["size_accumulators"]["medium_gt"] += torch.sum(
|
||||
medium_mask_gt
|
||||
).item()
|
||||
accumulators["size_accumulators"]["large_gt"] += torch.sum(large_mask_gt).item()
|
||||
|
||||
# Calculate areas for predictions
|
||||
pred_areas = (pred_boxes[:, 2] - pred_boxes[:, 0]) * (
|
||||
pred_boxes[:, 3] - pred_boxes[:, 1]
|
||||
)
|
||||
|
||||
# Count predictions by size (with confidence >= 0.5)
|
||||
conf_mask = pred_scores >= 0.5
|
||||
if torch.sum(conf_mask) == 0:
|
||||
continue # Skip if no predictions meet confidence threshold
|
||||
|
||||
small_mask = (pred_areas < small_threshold) & conf_mask
|
||||
medium_mask = (
|
||||
(pred_areas >= small_threshold)
|
||||
& (pred_areas < medium_threshold)
|
||||
& conf_mask
|
||||
)
|
||||
large_mask = (pred_areas >= medium_threshold) & conf_mask
|
||||
|
||||
accumulators["size_accumulators"]["small_det"] += torch.sum(small_mask).item()
|
||||
accumulators["size_accumulators"]["medium_det"] += torch.sum(medium_mask).item()
|
||||
accumulators["size_accumulators"]["large_det"] += torch.sum(large_mask).item()
|
||||
|
||||
# Process metrics for each IoU threshold
|
||||
for iou_threshold in iou_thresholds:
|
||||
process_iou_metrics(
|
||||
pred_boxes,
|
||||
pred_scores,
|
||||
pred_labels,
|
||||
gt_boxes,
|
||||
gt_labels,
|
||||
iou_matrix,
|
||||
accumulators["map_accumulators"][iou_threshold],
|
||||
iou_threshold,
|
||||
)
|
||||
|
||||
# Process metrics for each confidence threshold
|
||||
for conf_threshold in confidence_thresholds:
|
||||
process_confidence_metrics(
|
||||
pred_boxes,
|
||||
pred_scores,
|
||||
pred_labels,
|
||||
gt_boxes,
|
||||
gt_labels,
|
||||
iou_matrix,
|
||||
accumulators["conf_accumulators"][conf_threshold],
|
||||
conf_threshold,
|
||||
)
|
||||
|
||||
# Process size-based true positives with fixed IoU threshold of 0.5
|
||||
# Use a new gt_matched array to avoid interference with other metric calculations
|
||||
gt_matched = torch.zeros(len(gt_boxes), dtype=torch.bool)
|
||||
filtered_mask = pred_scores >= 0.5
|
||||
|
||||
if torch.sum(filtered_mask) > 0:
|
||||
filtered_boxes = pred_boxes[filtered_mask]
|
||||
filtered_scores = pred_scores[filtered_mask]
|
||||
filtered_labels = pred_labels[filtered_mask]
|
||||
# Recalculate IoU for filtered boxes
|
||||
filtered_iou_matrix = box_iou(filtered_boxes, gt_boxes)
|
||||
|
||||
# Sort predictions by confidence
|
||||
sorted_indices = torch.argsort(filtered_scores, descending=True)
|
||||
|
||||
for idx in sorted_indices:
|
||||
best_iou, best_gt_idx = torch.max(filtered_iou_matrix[idx], dim=0)
|
||||
|
||||
if best_iou >= 0.5 and not gt_matched[best_gt_idx]:
|
||||
if filtered_labels[idx] == gt_labels[best_gt_idx]:
|
||||
gt_matched[best_gt_idx] = True
|
||||
|
||||
# Categorize true positive by ground truth size (not prediction size)
|
||||
area = gt_areas[best_gt_idx].item()
|
||||
if area < small_threshold:
|
||||
accumulators["size_accumulators"]["small_tp"] += 1
|
||||
elif area < medium_threshold:
|
||||
accumulators["size_accumulators"]["medium_tp"] += 1
|
||||
else:
|
||||
accumulators["size_accumulators"]["large_tp"] += 1
|
||||
|
||||
|
||||
def process_iou_metrics(
|
||||
pred_boxes,
|
||||
pred_scores,
|
||||
pred_labels,
|
||||
gt_boxes,
|
||||
gt_labels,
|
||||
iou_matrix,
|
||||
accumulator,
|
||||
iou_threshold,
|
||||
):
|
||||
"""Process metrics for a specific IoU threshold"""
|
||||
# Apply a minimum confidence threshold of 0.05 for metrics
|
||||
min_conf_threshold = 0.05
|
||||
conf_mask = pred_scores >= min_conf_threshold
|
||||
|
||||
if torch.sum(conf_mask) == 0:
|
||||
return # Skip if no predictions after confidence filtering
|
||||
|
||||
# Filter predictions by confidence
|
||||
filtered_boxes = pred_boxes[conf_mask]
|
||||
filtered_scores = pred_scores[conf_mask]
|
||||
filtered_labels = pred_labels[conf_mask]
|
||||
|
||||
# Initialize array to track which gt boxes have been matched
|
||||
gt_matched = torch.zeros(len(gt_boxes), dtype=torch.bool)
|
||||
|
||||
# We may need a filtered IoU matrix if we're filtering predictions
|
||||
if len(filtered_boxes) < len(pred_boxes):
|
||||
# Recalculate IoU for filtered predictions
|
||||
filtered_iou_matrix = box_iou(filtered_boxes, gt_boxes)
|
||||
else:
|
||||
filtered_iou_matrix = iou_matrix
|
||||
|
||||
# Sort predictions by confidence score (high to low)
|
||||
sorted_indices = torch.argsort(filtered_scores, descending=True)
|
||||
|
||||
# True positives count for this batch
|
||||
batch_tp = 0
|
||||
|
||||
for idx in sorted_indices:
|
||||
# Find best matching ground truth box
|
||||
iou_values = filtered_iou_matrix[idx]
|
||||
|
||||
# Skip if no ground truth boxes
|
||||
if len(iou_values) == 0:
|
||||
# This is a false positive since there's no ground truth to match
|
||||
accumulator["false_positives"] += 1
|
||||
continue
|
||||
|
||||
best_iou, best_gt_idx = torch.max(iou_values, dim=0)
|
||||
|
||||
# Check if the prediction matches a ground truth box
|
||||
if (
|
||||
best_iou >= iou_threshold
|
||||
and not gt_matched[best_gt_idx]
|
||||
and filtered_labels[idx] == gt_labels[best_gt_idx]
|
||||
):
|
||||
batch_tp += 1
|
||||
gt_matched[best_gt_idx] = True
|
||||
else:
|
||||
accumulator["false_positives"] += 1
|
||||
|
||||
# Update true positives - Important: Don't artificially cap true positives here
|
||||
# Let finalize_metrics handle the capping to avoid recall underestimation during intermediate calculations
|
||||
accumulator["true_positives"] += batch_tp
|
||||
|
||||
# Count total detection (after confidence filtering)
|
||||
accumulator["total_detections"] += len(filtered_boxes)
|
||||
|
||||
|
||||
def process_confidence_metrics(
|
||||
pred_boxes,
|
||||
pred_scores,
|
||||
pred_labels,
|
||||
gt_boxes,
|
||||
gt_labels,
|
||||
iou_matrix,
|
||||
accumulator,
|
||||
conf_threshold,
|
||||
):
|
||||
"""Process metrics for a specific confidence threshold"""
|
||||
# Filter by confidence
|
||||
mask = pred_scores >= conf_threshold
|
||||
|
||||
if torch.sum(mask) == 0:
|
||||
return # Skip if no predictions after filtering
|
||||
|
||||
filtered_boxes = pred_boxes[mask]
|
||||
filtered_scores = pred_scores[mask]
|
||||
filtered_labels = pred_labels[mask]
|
||||
|
||||
accumulator["detections"] += len(filtered_boxes)
|
||||
|
||||
if len(filtered_boxes) == 0 or len(gt_boxes) == 0:
|
||||
return
|
||||
|
||||
# Calculate matches with fixed IoU threshold of 0.5
|
||||
gt_matched = torch.zeros(len(gt_boxes), dtype=torch.bool)
|
||||
|
||||
# We need to recalculate IoU for the filtered boxes
|
||||
filtered_iou_matrix = box_iou(filtered_boxes, gt_boxes)
|
||||
|
||||
# Sort by confidence for consistent ordering
|
||||
sorted_indices = torch.argsort(filtered_scores, descending=True)
|
||||
|
||||
for pred_idx in sorted_indices:
|
||||
best_iou, best_gt_idx = torch.max(filtered_iou_matrix[pred_idx], dim=0)
|
||||
if best_iou >= 0.5 and not gt_matched[best_gt_idx]:
|
||||
if filtered_labels[pred_idx] == gt_labels[best_gt_idx]:
|
||||
accumulator["true_positives"] += 1
|
||||
gt_matched[best_gt_idx] = True
|
||||
|
||||
|
||||
def finalize_metrics(accumulators):
|
||||
"""Calculate final metrics from accumulators"""
|
||||
metrics = {}
|
||||
total_gt = accumulators["total_gt"]
|
||||
|
||||
# Calculate mAP metrics
|
||||
for iou_threshold, map_acc in accumulators["map_accumulators"].items():
|
||||
true_positives = map_acc["true_positives"]
|
||||
false_positives = map_acc["false_positives"]
|
||||
|
||||
# Calculate metrics - Only cap true positives at the very end for final metrics
|
||||
# to prevent recall underestimation during intermediate calculations
|
||||
precision = true_positives / max(true_positives + false_positives, 1)
|
||||
recall = true_positives / max(total_gt, 1)
|
||||
|
||||
# Cap metrics for final reporting to ensure they're in valid range
|
||||
precision = min(1.0, precision)
|
||||
recall = min(1.0, recall)
|
||||
|
||||
f1_score = 2 * precision * recall / max(precision + recall, 1e-6)
|
||||
|
||||
# Simple average precision calculation (precision * recall)
|
||||
# This is a simplification; full AP calculation requires a PR curve
|
||||
ap = precision * recall
|
||||
|
||||
metrics.update(
|
||||
{
|
||||
f"mAP@{iou_threshold}": ap,
|
||||
f"precision@{iou_threshold}": precision,
|
||||
f"recall@{iou_threshold}": recall,
|
||||
f"f1_score@{iou_threshold}": f1_score,
|
||||
f"tp@{iou_threshold}": true_positives,
|
||||
f"fp@{iou_threshold}": false_positives,
|
||||
"gt_total": total_gt,
|
||||
}
|
||||
)
|
||||
|
||||
# Calculate confidence threshold metrics
|
||||
for conf_threshold, conf_acc in accumulators["conf_accumulators"].items():
|
||||
true_positives = conf_acc["true_positives"]
|
||||
detections = conf_acc["detections"]
|
||||
|
||||
# Calculate metrics without artificial capping to prevent recall underestimation
|
||||
precision = true_positives / max(detections, 1)
|
||||
recall = true_positives / max(total_gt, 1)
|
||||
|
||||
# Cap metrics for final reporting only
|
||||
precision = min(1.0, precision)
|
||||
recall = min(1.0, recall)
|
||||
|
||||
f1_score = 2 * precision * recall / max(precision + recall, 1e-6)
|
||||
|
||||
metrics.update(
|
||||
{
|
||||
f"precision@conf{conf_threshold}": precision,
|
||||
f"recall@conf{conf_threshold}": recall,
|
||||
f"f1_score@conf{conf_threshold}": f1_score,
|
||||
f"detections@conf{conf_threshold}": detections,
|
||||
f"tp@conf{conf_threshold}": true_positives,
|
||||
}
|
||||
)
|
||||
|
||||
# Calculate size metrics
|
||||
size_acc = accumulators["size_accumulators"]
|
||||
small_gt = size_acc["small_gt"]
|
||||
medium_gt = size_acc["medium_gt"]
|
||||
large_gt = size_acc["large_gt"]
|
||||
small_tp = size_acc["small_tp"]
|
||||
medium_tp = size_acc["medium_tp"]
|
||||
large_tp = size_acc["large_tp"]
|
||||
small_det = size_acc["small_det"]
|
||||
medium_det = size_acc["medium_det"]
|
||||
large_det = size_acc["large_det"]
|
||||
|
||||
# Calculate precision and recall without artificial capping
|
||||
small_precision = small_tp / max(small_det, 1) if small_det > 0 else 0
|
||||
small_recall = small_tp / max(small_gt, 1) if small_gt > 0 else 0
|
||||
|
||||
medium_precision = medium_tp / max(medium_det, 1) if medium_det > 0 else 0
|
||||
medium_recall = medium_tp / max(medium_gt, 1) if medium_gt > 0 else 0
|
||||
|
||||
large_precision = large_tp / max(large_det, 1) if large_det > 0 else 0
|
||||
large_recall = large_tp / max(large_gt, 1) if large_gt > 0 else 0
|
||||
|
||||
# Cap metrics for final reporting
|
||||
small_precision = min(1.0, small_precision)
|
||||
small_recall = min(1.0, small_recall)
|
||||
medium_precision = min(1.0, medium_precision)
|
||||
medium_recall = min(1.0, medium_recall)
|
||||
large_precision = min(1.0, large_precision)
|
||||
large_recall = min(1.0, large_recall)
|
||||
|
||||
metrics.update(
|
||||
{
|
||||
"small_precision": small_precision,
|
||||
"small_recall": small_recall,
|
||||
"small_count": small_gt,
|
||||
"small_tp": small_tp,
|
||||
"small_det": small_det,
|
||||
"medium_precision": medium_precision,
|
||||
"medium_recall": medium_recall,
|
||||
"medium_count": medium_gt,
|
||||
"medium_tp": medium_tp,
|
||||
"medium_det": medium_det,
|
||||
"large_precision": large_precision,
|
||||
"large_recall": large_recall,
|
||||
"large_count": large_gt,
|
||||
"large_tp": large_tp,
|
||||
"large_det": large_det,
|
||||
}
|
||||
)
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
def calculate_map(predictions, targets, iou_threshold=0.5):
|
||||
"""
|
||||
Calculate mean Average Precision (mAP) at a specific IoU threshold.
|
||||
|
||||
Args:
|
||||
predictions (list): List of prediction dictionaries
|
||||
targets (list): List of target dictionaries
|
||||
iou_threshold (float): IoU threshold for considering a detection as correct
|
||||
|
||||
Returns:
|
||||
dict: Dictionary with mAP, precision, recall and F1 score
|
||||
"""
|
||||
# Initialize counters
|
||||
total_gt = 0
|
||||
total_detections = 0
|
||||
true_positives = 0
|
||||
false_positives = 0
|
||||
|
||||
# Count total ground truth boxes
|
||||
for target in targets:
|
||||
total_gt += len(target["boxes"])
|
||||
|
||||
# Process all predictions
|
||||
for pred, target in zip(predictions, targets):
|
||||
pred_boxes = pred["boxes"]
|
||||
pred_scores = pred["scores"]
|
||||
pred_labels = pred["labels"]
|
||||
gt_boxes = target["boxes"]
|
||||
gt_labels = target["labels"]
|
||||
|
||||
# Skip if no predictions or no ground truth
|
||||
if len(pred_boxes) == 0 or len(gt_boxes) == 0:
|
||||
continue
|
||||
|
||||
# Calculate IoU between predictions and ground truth
|
||||
iou_matrix = box_iou(pred_boxes, gt_boxes)
|
||||
|
||||
# Initialize array to track which gt boxes have been matched
|
||||
gt_matched = torch.zeros(len(gt_boxes), dtype=torch.bool)
|
||||
|
||||
# Sort predictions by confidence score (high to low)
|
||||
sorted_indices = torch.argsort(pred_scores, descending=True)
|
||||
|
||||
# Count true positives and false positives
|
||||
for idx in sorted_indices:
|
||||
# Find best matching ground truth box
|
||||
iou_values = iou_matrix[idx]
|
||||
best_iou, best_gt_idx = torch.max(iou_values, dim=0)
|
||||
|
||||
# Check if the prediction matches a ground truth box
|
||||
if (
|
||||
best_iou >= iou_threshold
|
||||
and not gt_matched[best_gt_idx]
|
||||
and pred_labels[idx] == gt_labels[best_gt_idx]
|
||||
):
|
||||
true_positives += 1
|
||||
gt_matched[best_gt_idx] = True
|
||||
else:
|
||||
false_positives += 1
|
||||
|
||||
total_detections += len(pred_boxes)
|
||||
|
||||
# Calculate metrics
|
||||
precision = true_positives / max(true_positives + false_positives, 1)
|
||||
recall = true_positives / max(total_gt, 1)
|
||||
|
||||
# Cap metrics for final reporting
|
||||
precision = min(1.0, precision)
|
||||
recall = min(1.0, recall)
|
||||
|
||||
f1_score = 2 * precision * recall / max(precision + recall, 1e-6)
|
||||
|
||||
return {
|
||||
"mAP": precision * recall, # Simplified mAP calculation
|
||||
"precision": precision,
|
||||
"recall": recall,
|
||||
"f1_score": f1_score,
|
||||
"true_positives": true_positives,
|
||||
"false_positives": false_positives,
|
||||
"total_gt": total_gt,
|
||||
"total_detections": total_detections,
|
||||
}
|
||||
|
||||
|
||||
def calculate_metrics_at_confidence(predictions, targets, confidence_threshold=0.5):
|
||||
"""
|
||||
Calculate detection metrics at a specific confidence threshold.
|
||||
|
||||
Args:
|
||||
predictions (list): List of prediction dictionaries
|
||||
targets (list): List of target dictionaries
|
||||
confidence_threshold (float): Confidence threshold to filter predictions
|
||||
|
||||
Returns:
|
||||
dict: Dictionary with precision, recall, F1 score and detection count
|
||||
"""
|
||||
# Initialize counters
|
||||
total_gt = 0
|
||||
detections = 0
|
||||
true_positives = 0
|
||||
|
||||
# Count total ground truth boxes
|
||||
for target in targets:
|
||||
total_gt += len(target["boxes"])
|
||||
|
||||
# Process all predictions with confidence filter
|
||||
for pred, target in zip(predictions, targets):
|
||||
# Filter predictions by confidence threshold
|
||||
mask = pred["scores"] >= confidence_threshold
|
||||
filtered_boxes = pred["boxes"][mask]
|
||||
filtered_labels = pred["labels"][mask] if len(mask) > 0 else []
|
||||
|
||||
detections += len(filtered_boxes)
|
||||
|
||||
# Skip if no predictions after filtering
|
||||
if len(filtered_boxes) == 0:
|
||||
continue
|
||||
|
||||
# Calculate IoU with ground truth
|
||||
gt_boxes = target["boxes"]
|
||||
gt_labels = target["labels"]
|
||||
|
||||
# Skip if no ground truth
|
||||
if len(gt_boxes) == 0:
|
||||
continue
|
||||
|
||||
iou_matrix = box_iou(filtered_boxes, gt_boxes)
|
||||
|
||||
# Initialize array to track which gt boxes have been matched
|
||||
gt_matched = torch.zeros(len(gt_boxes), dtype=torch.bool)
|
||||
|
||||
# Find matches based on IoU threshold of 0.5
|
||||
for pred_idx in range(len(filtered_boxes)):
|
||||
best_iou, best_gt_idx = torch.max(iou_matrix[pred_idx], dim=0)
|
||||
if best_iou >= 0.5 and not gt_matched[best_gt_idx]:
|
||||
if (
|
||||
len(filtered_labels) > 0
|
||||
and filtered_labels[pred_idx] == gt_labels[best_gt_idx]
|
||||
):
|
||||
true_positives += 1
|
||||
gt_matched[best_gt_idx] = True
|
||||
|
||||
# Calculate metrics
|
||||
precision = true_positives / max(detections, 1)
|
||||
recall = true_positives / max(total_gt, 1)
|
||||
|
||||
# Cap metrics for final reporting
|
||||
precision = min(1.0, precision)
|
||||
recall = min(1.0, recall)
|
||||
|
||||
f1_score = 2 * precision * recall / max(precision + recall, 1e-6)
|
||||
|
||||
return {
|
||||
"precision": precision,
|
||||
"recall": recall,
|
||||
"f1_score": f1_score,
|
||||
"detections": detections,
|
||||
"true_positives": true_positives,
|
||||
}
|
||||
|
||||
|
||||
def calculate_size_based_metrics(predictions, targets):
|
||||
"""
|
||||
Calculate detection performance by object size.
|
||||
|
||||
Args:
|
||||
predictions (list): List of prediction dictionaries
|
||||
targets (list): List of target dictionaries
|
||||
|
||||
Returns:
|
||||
dict: Dictionary with size-based metrics
|
||||
"""
|
||||
# Define size categories (in pixels²)
|
||||
small_threshold = 32 * 32 # Small objects: area < 32²
|
||||
medium_threshold = 96 * 96 # Medium objects: 32² <= area < 96²
|
||||
# Large objects: area >= 96²
|
||||
|
||||
# Initialize counters for each size category
|
||||
size_metrics = {
|
||||
"small_recall": 0,
|
||||
"small_precision": 0,
|
||||
"small_count": 0,
|
||||
"medium_recall": 0,
|
||||
"medium_precision": 0,
|
||||
"medium_count": 0,
|
||||
"large_recall": 0,
|
||||
"large_precision": 0,
|
||||
"large_count": 0,
|
||||
}
|
||||
|
||||
# Count by size
|
||||
small_gt, medium_gt, large_gt = 0, 0, 0
|
||||
small_tp, medium_tp, large_tp = 0, 0, 0
|
||||
small_det, medium_det, large_det = 0, 0, 0
|
||||
|
||||
# Process all predictions
|
||||
for pred, target in zip(predictions, targets):
|
||||
pred_boxes = pred["boxes"]
|
||||
pred_scores = pred["scores"]
|
||||
gt_boxes = target["boxes"]
|
||||
|
||||
# Skip if no predictions or no ground truth
|
||||
if len(pred_boxes) == 0 or len(gt_boxes) == 0:
|
||||
continue
|
||||
|
||||
# Calculate areas for ground truth
|
||||
gt_areas = target.get("area", None)
|
||||
if gt_areas is None:
|
||||
# Calculate if not provided
|
||||
gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (
|
||||
gt_boxes[:, 3] - gt_boxes[:, 1]
|
||||
)
|
||||
|
||||
# Count ground truth by size
|
||||
small_gt += torch.sum((gt_areas < small_threshold)).item()
|
||||
medium_gt += torch.sum(
|
||||
(gt_areas >= small_threshold) & (gt_areas < medium_threshold)
|
||||
).item()
|
||||
large_gt += torch.sum((gt_areas >= medium_threshold)).item()
|
||||
|
||||
# Calculate areas for predictions
|
||||
pred_areas = (pred_boxes[:, 2] - pred_boxes[:, 0]) * (
|
||||
pred_boxes[:, 3] - pred_boxes[:, 1]
|
||||
)
|
||||
|
||||
# Count predictions by size (with confidence >= 0.5)
|
||||
conf_mask = pred_scores >= 0.5
|
||||
small_mask = (pred_areas < small_threshold) & conf_mask
|
||||
medium_mask = (
|
||||
(pred_areas >= small_threshold)
|
||||
& (pred_areas < medium_threshold)
|
||||
& conf_mask
|
||||
)
|
||||
large_mask = (pred_areas >= medium_threshold) & conf_mask
|
||||
|
||||
small_det += torch.sum(small_mask).item()
|
||||
medium_det += torch.sum(medium_mask).item()
|
||||
large_det += torch.sum(large_mask).item()
|
||||
|
||||
# Calculate IoU between predictions and ground truth
|
||||
iou_matrix = box_iou(pred_boxes, gt_boxes)
|
||||
|
||||
# Initialize array to track which gt boxes have been matched
|
||||
gt_matched = torch.zeros(len(gt_boxes), dtype=torch.bool)
|
||||
|
||||
# Sort predictions by confidence score (high to low)
|
||||
sorted_indices = torch.argsort(pred_scores, descending=True)
|
||||
|
||||
# Count true positives by size
|
||||
for idx in sorted_indices:
|
||||
if pred_scores[idx] < 0.5: # Skip low confidence detections
|
||||
continue
|
||||
|
||||
# Find best matching ground truth box
|
||||
best_iou, best_gt_idx = torch.max(iou_matrix[idx], dim=0)
|
||||
|
||||
# Check if the prediction matches a ground truth box with IoU >= 0.5
|
||||
if best_iou >= 0.5 and not gt_matched[best_gt_idx]:
|
||||
gt_matched[best_gt_idx] = True
|
||||
|
||||
# Categorize true positive by size
|
||||
area = gt_areas[best_gt_idx].item()
|
||||
if area < small_threshold:
|
||||
small_tp += 1
|
||||
elif area < medium_threshold:
|
||||
medium_tp += 1
|
||||
else:
|
||||
large_tp += 1
|
||||
|
||||
# Calculate metrics for each size category
|
||||
size_metrics["small_precision"] = small_tp / max(small_det, 1)
|
||||
size_metrics["small_recall"] = small_tp / max(small_gt, 1)
|
||||
size_metrics["small_count"] = small_gt
|
||||
|
||||
size_metrics["medium_precision"] = medium_tp / max(medium_det, 1)
|
||||
size_metrics["medium_recall"] = medium_tp / max(medium_gt, 1)
|
||||
size_metrics["medium_count"] = medium_gt
|
||||
|
||||
size_metrics["large_precision"] = large_tp / max(large_det, 1)
|
||||
size_metrics["large_recall"] = large_tp / max(large_gt, 1)
|
||||
size_metrics["large_count"] = large_gt
|
||||
|
||||
# Cap metrics for final reporting
|
||||
size_metrics["small_precision"] = min(1.0, size_metrics["small_precision"])
|
||||
size_metrics["small_recall"] = min(1.0, size_metrics["small_recall"])
|
||||
size_metrics["medium_precision"] = min(1.0, size_metrics["medium_precision"])
|
||||
size_metrics["medium_recall"] = min(1.0, size_metrics["medium_recall"])
|
||||
size_metrics["large_precision"] = min(1.0, size_metrics["large_precision"])
|
||||
size_metrics["large_recall"] = min(1.0, size_metrics["large_recall"])
|
||||
|
||||
return size_metrics
|
||||
|
||||
|
||||
# Example usage (can be removed or kept for testing):
|
||||
if __name__ == "__main__":
|
||||
# This is a dummy test and requires a model, dataloader, device
|
||||
|
||||
195
uv.lock
generated
195
uv.lock
generated
@@ -24,6 +24,56 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "contourpy"
|
||||
version = "1.3.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/25/c2/fc7193cc5383637ff390a712e88e4ded0452c9fbcf84abe3de5ea3df1866/contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699", size = 13465753 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/37/6b/175f60227d3e7f5f1549fcb374592be311293132207e451c3d7c654c25fb/contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509", size = 271494 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/6a/7833cfae2c1e63d1d8875a50fd23371394f540ce809d7383550681a1fa64/contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc", size = 255444 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7f/b3/7859efce66eaca5c14ba7619791b084ed02d868d76b928ff56890d2d059d/contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454", size = 307628 },
|
||||
{ url = "https://files.pythonhosted.org/packages/48/b2/011415f5e3f0a50b1e285a0bf78eb5d92a4df000553570f0851b6e309076/contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80", size = 347271 },
|
||||
{ url = "https://files.pythonhosted.org/packages/84/7d/ef19b1db0f45b151ac78c65127235239a8cf21a59d1ce8507ce03e89a30b/contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec", size = 318906 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ba/99/6794142b90b853a9155316c8f470d2e4821fe6f086b03e372aca848227dd/contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9", size = 323622 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3c/0f/37d2c84a900cd8eb54e105f4fa9aebd275e14e266736778bb5dccbf3bbbb/contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b", size = 1266699 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/8a/deb5e11dc7d9cc8f0f9c8b29d4f062203f3af230ba83c30a6b161a6effc9/contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d", size = 1326395 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/35/7e267ae7c13aaf12322ccc493531f1e7f2eb8fba2927b9d7a05ff615df7a/contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e", size = 175354 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a1/35/c2de8823211d07e8a79ab018ef03960716c5dff6f4d5bff5af87fd682992/contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d", size = 220971 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/e7/de62050dce687c5e96f946a93546910bc67e483fe05324439e329ff36105/contourpy-1.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a761d9ccfc5e2ecd1bf05534eda382aa14c3e4f9205ba5b1684ecfe400716ef2", size = 271548 },
|
||||
{ url = "https://files.pythonhosted.org/packages/78/4d/c2a09ae014ae984c6bdd29c11e74d3121b25eaa117eca0bb76340efd7e1c/contourpy-1.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:523a8ee12edfa36f6d2a49407f705a6ef4c5098de4f498619787e272de93f2d5", size = 255576 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ab/8a/915380ee96a5638bda80cd061ccb8e666bfdccea38d5741cb69e6dbd61fc/contourpy-1.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece6df05e2c41bd46776fbc712e0996f7c94e0d0543af1656956d150c4ca7c81", size = 306635 },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/5c/c83ce09375428298acd4e6582aeb68b1e0d1447f877fa993d9bf6cd3b0a0/contourpy-1.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:573abb30e0e05bf31ed067d2f82500ecfdaec15627a59d63ea2d95714790f5c2", size = 345925 },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/63/5b52f4a15e80c66c8078a641a3bfacd6e07106835682454647aca1afc852/contourpy-1.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fa36448e6a3a1a9a2ba23c02012c43ed88905ec80163f2ffe2421c7192a5d7", size = 318000 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/e2/30ca086c692691129849198659bf0556d72a757fe2769eb9620a27169296/contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c", size = 322689 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/77/f37812ef700f1f185d348394debf33f22d531e714cf6a35d13d68a7003c7/contourpy-1.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5b75aa69cb4d6f137b36f7eb2ace9280cfb60c55dc5f61c731fdf6f037f958a3", size = 1268413 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/6d/ce84e79cdd128542ebeb268f84abb4b093af78e7f8ec504676673d2675bc/contourpy-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:041b640d4ec01922083645a94bb3b2e777e6b626788f4095cf21abbe266413c1", size = 1326530 },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/22/8282f4eae20c73c89bee7a82a19c4e27af9b57bb602ecaa00713d5bdb54d/contourpy-1.3.1-cp313-cp313-win32.whl", hash = "sha256:36987a15e8ace5f58d4d5da9dca82d498c2bbb28dff6e5d04fbfcc35a9cb3a82", size = 175315 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/d5/28bca491f65312b438fbf076589dcde7f6f966b196d900777f5811b9c4e2/contourpy-1.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:a7895f46d47671fa7ceec40f31fae721da51ad34bdca0bee83e38870b1f47ffd", size = 220987 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/24/a4b285d6adaaf9746e4700932f579f1a7b6f9681109f694cfa233ae75c4e/contourpy-1.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ddeb796389dadcd884c7eb07bd14ef12408aaae358f0e2ae24114d797eede30", size = 285001 },
|
||||
{ url = "https://files.pythonhosted.org/packages/48/1d/fb49a401b5ca4f06ccf467cd6c4f1fd65767e63c21322b29b04ec40b40b9/contourpy-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19c1555a6801c2f084c7ddc1c6e11f02eb6a6016ca1318dd5452ba3f613a1751", size = 268553 },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/1e/4aef9470d13fd029087388fae750dccb49a50c012a6c8d1d634295caa644/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:841ad858cff65c2c04bf93875e384ccb82b654574a6d7f30453a04f04af71342", size = 310386 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b0/34/910dc706ed70153b60392b5305c708c9810d425bde12499c9184a1100888/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4318af1c925fb9a4fb190559ef3eec206845f63e80fb603d47f2d6d67683901c", size = 349806 },
|
||||
{ url = "https://files.pythonhosted.org/packages/31/3c/faee6a40d66d7f2a87f7102236bf4780c57990dd7f98e5ff29881b1b1344/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:14c102b0eab282427b662cb590f2e9340a9d91a1c297f48729431f2dcd16e14f", size = 321108 },
|
||||
{ url = "https://files.pythonhosted.org/packages/17/69/390dc9b20dd4bb20585651d7316cc3054b7d4a7b4f8b710b2b698e08968d/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e806338bfeaa006acbdeba0ad681a10be63b26e1b17317bfac3c5d98f36cda", size = 327291 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ef/74/7030b67c4e941fe1e5424a3d988080e83568030ce0355f7c9fc556455b01/contourpy-1.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4d76d5993a34ef3df5181ba3c92fabb93f1eaa5729504fb03423fcd9f3177242", size = 1263752 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/ed/92d86f183a8615f13f6b9cbfc5d4298a509d6ce433432e21da838b4b63f4/contourpy-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:89785bb2a1980c1bd87f0cb1517a71cde374776a5f150936b82580ae6ead44a1", size = 1318403 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b3/0e/c8e4950c77dcfc897c71d61e56690a0a9df39543d2164040301b5df8e67b/contourpy-1.3.1-cp313-cp313t-win32.whl", hash = "sha256:8eb96e79b9f3dcadbad2a3891672f81cdcab7f95b27f28f1c67d75f045b6b4f1", size = 185117 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c1/31/1ae946f11dfbd229222e6d6ad8e7bd1891d3d48bde5fbf7a0beb9491f8e3/contourpy-1.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:287ccc248c9e0d0566934e7d606201abd74761b5703d804ff3df8935f523d546", size = 236668 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "cycler"
|
||||
version = "0.12.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "distlib"
|
||||
version = "0.3.9"
|
||||
@@ -42,6 +92,31 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/4d/36/2a115987e2d8c300a974597416d9de88f2444426de9571f4b59b2cca3acc/filelock-3.18.0-py3-none-any.whl", hash = "sha256:c401f4f8377c4464e6db25fff06205fd89bdd83b65eb0488ed1b160f780e21de", size = 16215 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fonttools"
|
||||
version = "4.57.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/03/2d/a9a0b6e3a0cf6bd502e64fc16d894269011930cabfc89aee20d1635b1441/fonttools-4.57.0.tar.gz", hash = "sha256:727ece10e065be2f9dd239d15dd5d60a66e17eac11aea47d447f9f03fdbc42de", size = 3492448 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/cb/98/d4bc42d43392982eecaaca117d79845734d675219680cd43070bb001bc1f/fonttools-4.57.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:889e45e976c74abc7256d3064aa7c1295aa283c6bb19810b9f8b604dfe5c7f31", size = 2751824 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/62/7168030eeca3742fecf45f31e63b5ef48969fa230a672216b805f1d61548/fonttools-4.57.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0425c2e052a5f1516c94e5855dbda706ae5a768631e9fcc34e57d074d1b65b92", size = 2283072 },
|
||||
{ url = "https://files.pythonhosted.org/packages/5d/82/121a26d9646f0986ddb35fbbaf58ef791c25b59ecb63ffea2aab0099044f/fonttools-4.57.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44c26a311be2ac130f40a96769264809d3b0cb297518669db437d1cc82974888", size = 4788020 },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/26/e0f2fb662e022d565bbe280a3cfe6dafdaabf58889ff86fdef2d31ff1dde/fonttools-4.57.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84c41ba992df5b8d680b89fd84c6a1f2aca2b9f1ae8a67400c8930cd4ea115f6", size = 4859096 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9e/44/9075e323347b1891cdece4b3f10a3b84a8f4c42a7684077429d9ce842056/fonttools-4.57.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ea1e9e43ca56b0c12440a7c689b1350066595bebcaa83baad05b8b2675129d98", size = 4964356 },
|
||||
{ url = "https://files.pythonhosted.org/packages/48/28/caa8df32743462fb966be6de6a79d7f30393859636d7732e82efa09fbbb4/fonttools-4.57.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:84fd56c78d431606332a0627c16e2a63d243d0d8b05521257d77c6529abe14d8", size = 5226546 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/46/95ab0f0d2e33c5b1a4fc1c0efe5e286ba9359602c0a9907adb1faca44175/fonttools-4.57.0-cp312-cp312-win32.whl", hash = "sha256:f4376819c1c778d59e0a31db5dc6ede854e9edf28bbfa5b756604727f7f800ac", size = 2146776 },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/5d/1be5424bb305880e1113631f49a55ea7c7da3a5fe02608ca7c16a03a21da/fonttools-4.57.0-cp312-cp312-win_amd64.whl", hash = "sha256:57e30241524879ea10cdf79c737037221f77cc126a8cdc8ff2c94d4a522504b9", size = 2193956 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/2f/11439f3af51e4bb75ac9598c29f8601aa501902dcedf034bdc41f47dd799/fonttools-4.57.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:408ce299696012d503b714778d89aa476f032414ae57e57b42e4b92363e0b8ef", size = 2739175 },
|
||||
{ url = "https://files.pythonhosted.org/packages/25/52/677b55a4c0972dc3820c8dba20a29c358197a78229daa2ea219fdb19e5d5/fonttools-4.57.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bbceffc80aa02d9e8b99f2a7491ed8c4a783b2fc4020119dc405ca14fb5c758c", size = 2276583 },
|
||||
{ url = "https://files.pythonhosted.org/packages/64/79/184555f8fa77b827b9460a4acdbbc0b5952bb6915332b84c615c3a236826/fonttools-4.57.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f022601f3ee9e1f6658ed6d184ce27fa5216cee5b82d279e0f0bde5deebece72", size = 4766437 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f8/ad/c25116352f456c0d1287545a7aa24e98987b6d99c5b0456c4bd14321f20f/fonttools-4.57.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4dea5893b58d4637ffa925536462ba626f8a1b9ffbe2f5c272cdf2c6ebadb817", size = 4838431 },
|
||||
{ url = "https://files.pythonhosted.org/packages/53/ae/398b2a833897297797a44f519c9af911c2136eb7aa27d3f1352c6d1129fa/fonttools-4.57.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:dff02c5c8423a657c550b48231d0a48d7e2b2e131088e55983cfe74ccc2c7cc9", size = 4951011 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/5d/7cb31c4bc9ffb9a2bbe8b08f8f53bad94aeb158efad75da645b40b62cb73/fonttools-4.57.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:767604f244dc17c68d3e2dbf98e038d11a18abc078f2d0f84b6c24571d9c0b13", size = 5205679 },
|
||||
{ url = "https://files.pythonhosted.org/packages/4c/e4/6934513ec2c4d3d69ca1bc3bd34d5c69dafcbf68c15388dd3bb062daf345/fonttools-4.57.0-cp313-cp313-win32.whl", hash = "sha256:8e2e12d0d862f43d51e5afb8b9751c77e6bec7d2dc00aad80641364e9df5b199", size = 2144833 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/0d/2177b7fdd23d017bcfb702fd41e47d4573766b9114da2fddbac20dcc4957/fonttools-4.57.0-cp313-cp313-win_amd64.whl", hash = "sha256:f1d6bc9c23356908db712d282acb3eebd4ae5ec6d8b696aa40342b1d84f8e9e3", size = 2190799 },
|
||||
{ url = "https://files.pythonhosted.org/packages/90/27/45f8957c3132917f91aaa56b700bcfc2396be1253f685bd5c68529b6f610/fonttools-4.57.0-py3-none-any.whl", hash = "sha256:3122c604a675513c68bd24c6a8f9091f1c2376d18e8f5fe5a101746c81b3e98f", size = 1093605 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fsspec"
|
||||
version = "2025.3.2"
|
||||
@@ -81,6 +156,57 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "kiwisolver"
|
||||
version = "1.4.8"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/82/59/7c91426a8ac292e1cdd53a63b6d9439abd573c875c3f92c146767dd33faf/kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e", size = 97538 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/aa/cea685c4ab647f349c3bc92d2daf7ae34c8e8cf405a6dcd3a497f58a2ac3/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502", size = 124152 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c5/0b/8db6d2e2452d60d5ebc4ce4b204feeb16176a851fd42462f66ade6808084/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31", size = 66555 },
|
||||
{ url = "https://files.pythonhosted.org/packages/60/26/d6a0db6785dd35d3ba5bf2b2df0aedc5af089962c6eb2cbf67a15b81369e/kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb", size = 65067 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/ed/1d97f7e3561e09757a196231edccc1bcf59d55ddccefa2afc9c615abd8e0/kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f", size = 1378443 },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/61/39d30b99954e6b46f760e6289c12fede2ab96a254c443639052d1b573fbc/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc", size = 1472728 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/3e/804163b932f7603ef256e4a715e5843a9600802bb23a68b4e08c8c0ff61d/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a", size = 1478388 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8a/9e/60eaa75169a154700be74f875a4d9961b11ba048bef315fbe89cb6999056/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a", size = 1413849 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/b3/9458adb9472e61a998c8c4d95cfdfec91c73c53a375b30b1428310f923e4/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a", size = 1475533 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e4/7a/0a42d9571e35798de80aef4bb43a9b672aa7f8e58643d7bd1950398ffb0a/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3", size = 2268898 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/07/1255dc8d80271400126ed8db35a1795b1a2c098ac3a72645075d06fe5c5d/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b", size = 2425605 },
|
||||
{ url = "https://files.pythonhosted.org/packages/84/df/5a3b4cf13780ef6f6942df67b138b03b7e79e9f1f08f57c49957d5867f6e/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4", size = 2375801 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8f/10/2348d068e8b0f635c8c86892788dac7a6b5c0cb12356620ab575775aad89/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d", size = 2520077 },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/d8/014b89fee5d4dce157d814303b0fce4d31385a2af4c41fed194b173b81ac/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8", size = 2338410 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bd/72/dfff0cc97f2a0776e1c9eb5bef1ddfd45f46246c6533b0191887a427bca5/kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50", size = 71853 },
|
||||
{ url = "https://files.pythonhosted.org/packages/dc/85/220d13d914485c0948a00f0b9eb419efaf6da81b7d72e88ce2391f7aed8d/kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476", size = 65424 },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/b3/e62464a652f4f8cd9006e13d07abad844a47df1e6537f73ddfbf1bc997ec/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09", size = 124156 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8d/2d/f13d06998b546a2ad4f48607a146e045bbe48030774de29f90bdc573df15/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1", size = 66555 },
|
||||
{ url = "https://files.pythonhosted.org/packages/59/e3/b8bd14b0a54998a9fd1e8da591c60998dc003618cb19a3f94cb233ec1511/kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c", size = 65071 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/1c/6c86f6d85ffe4d0ce04228d976f00674f1df5dc893bf2dd4f1928748f187/kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b", size = 1378053 },
|
||||
{ url = "https://files.pythonhosted.org/packages/4e/b9/1c6e9f6dcb103ac5cf87cb695845f5fa71379021500153566d8a8a9fc291/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47", size = 1472278 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/81/aca1eb176de671f8bda479b11acdc42c132b61a2ac861c883907dde6debb/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16", size = 1478139 },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/f4/e081522473671c97b2687d380e9e4c26f748a86363ce5af48b4a28e48d06/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc", size = 1413517 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8f/e9/6a7d025d8da8c4931522922cd706105aa32b3291d1add8c5427cdcd66e63/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246", size = 1474952 },
|
||||
{ url = "https://files.pythonhosted.org/packages/82/13/13fa685ae167bee5d94b415991c4fc7bb0a1b6ebea6e753a87044b209678/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794", size = 2269132 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ef/92/bb7c9395489b99a6cb41d502d3686bac692586db2045adc19e45ee64ed23/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b", size = 2425997 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ed/12/87f0e9271e2b63d35d0d8524954145837dd1a6c15b62a2d8c1ebe0f182b4/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3", size = 2376060 },
|
||||
{ url = "https://files.pythonhosted.org/packages/02/6e/c8af39288edbce8bf0fa35dee427b082758a4b71e9c91ef18fa667782138/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957", size = 2520471 },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/78/df381bc7b26e535c91469f77f16adcd073beb3e2dd25042efd064af82323/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb", size = 2338793 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d0/dc/c1abe38c37c071d0fc71c9a474fd0b9ede05d42f5a458d584619cfd2371a/kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2", size = 71855 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a0/b6/21529d595b126ac298fdd90b705d87d4c5693de60023e0efcb4f387ed99e/kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30", size = 65430 },
|
||||
{ url = "https://files.pythonhosted.org/packages/34/bd/b89380b7298e3af9b39f49334e3e2a4af0e04819789f04b43d560516c0c8/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c", size = 126294 },
|
||||
{ url = "https://files.pythonhosted.org/packages/83/41/5857dc72e5e4148eaac5aa76e0703e594e4465f8ab7ec0fc60e3a9bb8fea/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc", size = 67736 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/d1/be059b8db56ac270489fb0b3297fd1e53d195ba76e9bbb30e5401fa6b759/kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712", size = 66194 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/83/4b73975f149819eb7dcf9299ed467eba068ecb16439a98990dcb12e63fdd/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e", size = 1465942 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c7/2c/30a5cdde5102958e602c07466bce058b9d7cb48734aa7a4327261ac8e002/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880", size = 1595341 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/9b/1e71db1c000385aa069704f5990574b8244cce854ecd83119c19e83c9586/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062", size = 1598455 },
|
||||
{ url = "https://files.pythonhosted.org/packages/85/92/c8fec52ddf06231b31cbb779af77e99b8253cd96bd135250b9498144c78b/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7", size = 1522138 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/51/9eb7e2cd07a15d8bdd976f6190c0164f92ce1904e5c0c79198c4972926b7/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed", size = 1582857 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/95/c5a00387a5405e68ba32cc64af65ce881a39b98d73cc394b24143bebc5b8/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d", size = 2293129 },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/83/eeb7af7d706b8347548313fa3a3a15931f404533cc54fe01f39e830dd231/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165", size = 2421538 },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/f9/27e94c1b3eb29e6933b6986ffc5fa1177d2cd1f0c8efc5f02c91c9ac61de/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6", size = 2390661 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/d4/3c9735faa36ac591a4afcc2980d2691000506050b7a7e80bcfe44048daa7/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90", size = 2546710 },
|
||||
{ url = "https://files.pythonhosted.org/packages/4c/fa/be89a49c640930180657482a74970cdcf6f7072c8d2471e1babe17a222dc/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85", size = 2349213 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "markupsafe"
|
||||
version = "3.0.2"
|
||||
@@ -119,6 +245,43 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "matplotlib"
|
||||
version = "3.10.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "contourpy" },
|
||||
{ name = "cycler" },
|
||||
{ name = "fonttools" },
|
||||
{ name = "kiwisolver" },
|
||||
{ name = "numpy" },
|
||||
{ name = "packaging" },
|
||||
{ name = "pillow" },
|
||||
{ name = "pyparsing" },
|
||||
{ name = "python-dateutil" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/2f/08/b89867ecea2e305f408fbb417139a8dd941ecf7b23a2e02157c36da546f0/matplotlib-3.10.1.tar.gz", hash = "sha256:e8d2d0e3881b129268585bf4765ad3ee73a4591d77b9a18c214ac7e3a79fb2ba", size = 36743335 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/7c/1d/5e0dc3b59c034e43de16f94deb68f4ad8a96b3ea00f4b37c160b7474928e/matplotlib-3.10.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:66e907a06e68cb6cfd652c193311d61a12b54f56809cafbed9736ce5ad92f107", size = 8175488 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7a/81/dae7e14042e74da658c3336ab9799128e09a1ee03964f2d89630b5d12106/matplotlib-3.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b4bb156abb8fa5e5b2b460196f7db7264fc6d62678c03457979e7d5254b7be", size = 8046264 },
|
||||
{ url = "https://files.pythonhosted.org/packages/21/c4/22516775dcde10fc9c9571d155f90710761b028fc44f660508106c363c97/matplotlib-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1985ad3d97f51307a2cbfc801a930f120def19ba22864182dacef55277102ba6", size = 8452048 },
|
||||
{ url = "https://files.pythonhosted.org/packages/63/23/c0615001f67ce7c96b3051d856baedc0c818a2ed84570b9bf9bde200f85d/matplotlib-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c96f2c2f825d1257e437a1482c5a2cf4fee15db4261bd6fc0750f81ba2b4ba3d", size = 8597111 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ca/c0/a07939a82aed77770514348f4568177d7dadab9787ebc618a616fe3d665e/matplotlib-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:35e87384ee9e488d8dd5a2dd7baf471178d38b90618d8ea147aced4ab59c9bea", size = 9402771 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a6/b6/a9405484fb40746fdc6ae4502b16a9d6e53282ba5baaf9ebe2da579f68c4/matplotlib-3.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:cfd414bce89cc78a7e1d25202e979b3f1af799e416010a20ab2b5ebb3a02425c", size = 8063742 },
|
||||
{ url = "https://files.pythonhosted.org/packages/60/73/6770ff5e5523d00f3bc584acb6031e29ee5c8adc2336b16cd1d003675fe0/matplotlib-3.10.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c42eee41e1b60fd83ee3292ed83a97a5f2a8239b10c26715d8a6172226988d7b", size = 8176112 },
|
||||
{ url = "https://files.pythonhosted.org/packages/08/97/b0ca5da0ed54a3f6599c3ab568bdda65269bc27c21a2c97868c1625e4554/matplotlib-3.10.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4f0647b17b667ae745c13721602b540f7aadb2a32c5b96e924cd4fea5dcb90f1", size = 8046931 },
|
||||
{ url = "https://files.pythonhosted.org/packages/df/9a/1acbdc3b165d4ce2dcd2b1a6d4ffb46a7220ceee960c922c3d50d8514067/matplotlib-3.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aa3854b5f9473564ef40a41bc922be978fab217776e9ae1545c9b3a5cf2092a3", size = 8453422 },
|
||||
{ url = "https://files.pythonhosted.org/packages/51/d0/2bc4368abf766203e548dc7ab57cf7e9c621f1a3c72b516cc7715347b179/matplotlib-3.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e496c01441be4c7d5f96d4e40f7fca06e20dcb40e44c8daa2e740e1757ad9e6", size = 8596819 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ab/1b/8b350f8a1746c37ab69dda7d7528d1fc696efb06db6ade9727b7887be16d/matplotlib-3.10.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5d45d3f5245be5b469843450617dcad9af75ca50568acf59997bed9311131a0b", size = 9402782 },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/06/f570373d24d93503988ba8d04f213a372fa1ce48381c5eb15da985728498/matplotlib-3.10.1-cp313-cp313-win_amd64.whl", hash = "sha256:8e8e25b1209161d20dfe93037c8a7f7ca796ec9aa326e6e4588d8c4a5dd1e473", size = 8063812 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/e0/8c811a925b5a7ad75135f0e5af46408b78af88bbb02a1df775100ef9bfef/matplotlib-3.10.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:19b06241ad89c3ae9469e07d77efa87041eac65d78df4fcf9cac318028009b01", size = 8214021 },
|
||||
{ url = "https://files.pythonhosted.org/packages/4a/34/319ec2139f68ba26da9d00fce2ff9f27679fb799a6c8e7358539801fd629/matplotlib-3.10.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:01e63101ebb3014e6e9f80d9cf9ee361a8599ddca2c3e166c563628b39305dbb", size = 8090782 },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/ea/9812124ab9a99df5b2eec1110e9b2edc0b8f77039abf4c56e0a376e84a29/matplotlib-3.10.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f06bad951eea6422ac4e8bdebcf3a70c59ea0a03338c5d2b109f57b64eb3972", size = 8478901 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/db/b05bf463689134789b06dea85828f8ebe506fa1e37593f723b65b86c9582/matplotlib-3.10.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3dfb036f34873b46978f55e240cff7a239f6c4409eac62d8145bad3fc6ba5a3", size = 8613864 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c2/04/41ccec4409f3023a7576df3b5c025f1a8c8b81fbfe922ecfd837ac36e081/matplotlib-3.10.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dc6ab14a7ab3b4d813b88ba957fc05c79493a037f54e246162033591e770de6f", size = 9409487 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ac/c2/0d5aae823bdcc42cc99327ecdd4d28585e15ccd5218c453b7bcd827f3421/matplotlib-3.10.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bc411ebd5889a78dabbc457b3fa153203e22248bfa6eedc6797be5df0164dbf9", size = 8134832 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "mpmath"
|
||||
version = "1.3.0"
|
||||
@@ -383,6 +546,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/88/74/a88bf1b1efeae488a0c0b7bdf71429c313722d1fc0f377537fbe554e6180/pre_commit-4.2.0-py2.py3-none-any.whl", hash = "sha256:a009ca7205f1eb497d10b845e52c838a98b6cdd2102a6c8e4540e94ee75c58bd", size = 220707 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pyparsing"
|
||||
version = "3.2.3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/bb/22/f1129e69d94ffff626bdb5c835506b3a5b4f3d070f17ea295e12c2c6f60f/pyparsing-3.2.3.tar.gz", hash = "sha256:b9c13f1ab8b3b542f72e28f634bad4de758ab3ce4546e4301970ad6fa77c38be", size = 1088608 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl", hash = "sha256:a749938e02d6fd0b59b356ca504a24982314bb090c383e3cf201c95ef7e2bfcf", size = 111120 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pytest"
|
||||
version = "8.3.5"
|
||||
@@ -398,6 +570,18 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/30/3d/64ad57c803f1fa1e963a7946b6e0fea4a70df53c1a7fed304586539c2bac/pytest-8.3.5-py3-none-any.whl", hash = "sha256:c69214aa47deac29fad6c2a4f590b9c4a9fdb16a403176fe154b79c0b4d4d820", size = 343634 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "python-dateutil"
|
||||
version = "2.9.0.post0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "six" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pyyaml"
|
||||
version = "6.0.2"
|
||||
@@ -458,6 +642,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/54/21/f43f0a1fa8b06b32812e0975981f4677d28e0f3271601dc88ac5a5b83220/setuptools-78.1.0-py3-none-any.whl", hash = "sha256:3e386e96793c8702ae83d17b853fb93d3e09ef82ec62722e61da5cd22376dcd8", size = 1256108 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "six"
|
||||
version = "1.17.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "sympy"
|
||||
version = "1.13.1"
|
||||
@@ -570,6 +763,7 @@ name = "torchvision-vibecoding-project"
|
||||
version = "0.1.0"
|
||||
source = { virtual = "." }
|
||||
dependencies = [
|
||||
{ name = "matplotlib" },
|
||||
{ name = "numpy" },
|
||||
{ name = "pillow" },
|
||||
{ name = "pytest" },
|
||||
@@ -587,6 +781,7 @@ dev = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "matplotlib", specifier = ">=3.10.1" },
|
||||
{ name = "numpy", specifier = ">=2.2.4" },
|
||||
{ name = "pillow", specifier = ">=11.1.0" },
|
||||
{ name = "pytest", specifier = ">=8.3.5" },
|
||||
|
||||
Reference in New Issue
Block a user