Refactor: Update Penn-Fudan Mask R-CNN configuration and data transformation logic for memory optimization

This commit is contained in:
Craig
2025-04-12 11:13:22 +01:00
parent 217cfba9ba
commit 2b38c04a57
2 changed files with 31 additions and 22 deletions

View File

@@ -2,20 +2,30 @@
Configuration for training Mask R-CNN on the Penn-Fudan dataset.
"""
from .base_config import base_config
from configs.base_config import base_config
# Create a copy of the base configuration
config = base_config.copy()
# Override necessary settings from base_config
# Update specific values for this experiment
config.update(
{
"config_name": "pennfudan_maskrcnn_v1", # Unique name for this experiment run
"data_root": "data/PennFudanPed", # Explicitly set dataset root
"num_classes": 2, # Penn-Fudan has 1 class (pedestrian) + background
# Adjust other parameters as needed for this specific experiment, e.g.:
# 'batch_size': 4,
# 'num_epochs': 15,
# 'lr': 0.001,
# Core configuration
"config_name": "pennfudan_maskrcnn_v1",
"data_root": "data/PennFudanPed",
"num_classes": 2, # background + pedestrian
# Training parameters - modified for memory constraints
"batch_size": 1, # Reduced from 2 to 1 to save memory
"num_epochs": 10,
# Optimizer settings
"lr": 0.002, # Slightly reduced learning rate for smaller batch size
"momentum": 0.9,
"weight_decay": 0.0005,
# Memory optimization settings
"pin_memory": False, # Set to False to reduce memory pressure
"num_workers": 2, # Reduced from 4 to 2
# Device settings
"device": "cuda",
}
)

View File

@@ -104,29 +104,28 @@ class PennFudanDataset(torch.utils.data.Dataset):
def get_transform(train):
"""Gets the appropriate set of transforms.
"""Get the transformations for the dataset.
Args:
train (bool): Whether to apply training augmentations.
train (bool): Whether to get transforms for training or evaluation.
Returns:
torchvision.transforms.Compose: A composed Torchvision transform.
torchvision.transforms.Compose: The composed transforms.
"""
transforms = []
# Always convert image to PyTorch tensor and scale to [0, 1]
# Convert to PyTorch tensor and normalize
transforms.append(T.ToImage())
# Add resize transform to reduce memory usage (max size of 800px)
transforms.append(T.Resize(800))
transforms.append(T.ToDtype(torch.float32, scale=True))
# Data augmentation for training
if train:
# Add simple data augmentation for training
transforms.append(T.RandomHorizontalFlip(p=0.5))
# Add other augmentations here if needed
# e.g., T.ColorJitter(...), T.RandomResizedCrop(...) ensuring
# bounding boxes/masks are handled correctly by v2 transforms.
# Note: Normalization (e.g., T.Normalize) is often applied,
# but pre-trained models in torchvision usually handle this internally
# or expect [0, 1] range inputs.
transforms.append(T.RandomHorizontalFlip(0.5))
# Could add more augmentations here if desired
return T.Compose(transforms)